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Abstract. The usual Bayesian approach for count data is Gamma/Poisson
conjugate analysis. However, in this conjugate analysis the influence of
the prior distribution could be dominant even when prior and likeli-
hood are in conflict. Our proposal is an analysis based on the Cauchy
prior for natural parameter in exponential families. In this work we
show that the Cauchy/Poisson posterior model is a robust model for
count data in contrast with the usual conjugate Bayesian approach
Gamma/Poisson model. We use the polynomial tails comparison theo-
rem given in Fúquene, J. A., Cook, J. D. and Pericchi, L. R. (2009) that
gives easy-to-check conditions to ensure prior robustness. In short, this
means that when the location of the prior and the bulk of the mass of
the likelihood get further apart (a situation of conflict between prior and
likelihood information), Bayes Theorem will cause the posterior distri-
bution to discount the prior information. Finally, we analyze artificial
data sets to investigate the robustness of the Cauchy/Poisson model.

1 Introduction

In recent years the Bayesian robustness methods have been very impor-
tant in developments of Bayesian Analysis. We can find in the literature
different proposals about robust priors. For example in Dawid, A. P. (1973),
O’Hagan, A. (1979), Berger, J. O. (1985), Pericchi, L. R. and Smith, A. F. M.
(1992) and Gelman, A., Jakulin, A., Pittau, M. G. and Su, Y.-S. (2008), ro-
bust priors for location parameters are studied; however, for the Poisson
likelihood there is no previously known clear results in Bayesian robustness.
In Fúquene, J. A., Cook, J. D. and Pericchi, L. R. (2009) the Cauchy and
Berger’s robust heavy-tailed priors are considered and several mathematical
results are presented. These authors obtain specific results for the Binomial
and Normal likelihoods with applications to clinical trials. On the other
hand, the proposal in this paper is to show the robustness of the Cauchy
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prior for the Poisson likelihood. Robust priors have bounded influence, in
other words the prior is discounted automatically when there are conflicts
between prior information and data. An important term in this paper is
“The posterior mean is robust with respect to the prior“ which is explained
in the following definition (Fúquene, J. (2009)):

Definition 1.1. Let λ be a random variable with prior distribution, π(λ),
with location parameter µ. The posterior mean is robust with respect to the
prior, if and only if, the posterior mean remains bounded as µ → +∞ or
µ → −∞. That is, the posterior mean is robust if there exists a constant M
such that −M < E(λ|y) < M .

Fúquene, J. A., Cook, J. D. and Pericchi, L. R. (2009) present a novel re-
sult, The Polynomial Tails Comparison Theorem, which gives easy-to-check
conditions to ensure prior robustness for the natural parameter in expo-
nential families. We can use this result for the Poisson likelihood, because
the likelihood does not have to be location/scale. In this work we show
the robustness of the cauchy prior for the Cauchy/Poisson posterior model
in contrast with the usual conjugate approach Gamma/Poisson posterior
model. The paper proceeds as follows: in Section 2, we give a background of
the Cauchy/Poisson and Gamma/Poisson posterior models. In Section 3 we
study the prior specification and posterior moments of the Cauchy/Poisson
model. In section 4 we analyze artificial data sets to investigate the ro-
bustness of the Cauchy/Poisson model. We make some closing concluding
remarks in Section 5.

2 The Poisson Likelihood with Conjugate and Cauchy Priors

The Poisson likelihood arises in the study of data taking the form of counts.
In words, let a sample of size n, X1, . . . , Xn ∼ Poisson(θ). The Poisson
distribution in the exponential family form is

f(X̄n | λ) ∝ exp(nX̄nλ− neλ), (2.1)

where X̄n =
∑n

i=1 Xi and the natural parameter is given by λ = log(θ).
The maximum likelihood estimator (MLE) of the natural parameter is
λ̂ = log(X̄n). Now we perform a conjugate analysis, and express the Gamma(α, β)
prior, after of the transformation of the parameter θ to λ = log(θ), as

pG(λ) =
βα

Γ(α)
exp(λα− βeλ). α, β > 0. (2.2)
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The cumulant generating function of the prior distribution pG(λ) is given
by EG(etλ) ∝ log(Γ(α + t))− t log(Γ(β)), hence

EG(λ) = Ψ(α)− log(β); VG(λ) = Ψ
′
(α), (2.3)

where Ψ(·) is the digamma function and Ψ
′
(·) is the trigamma function

(see Abramowitz, M. and Stegun, I. (1970)). The posterior distribution for
the Gamma/Poisson model is given by

fGP (λ|X̄n) =
(β + n)α+nX̄n

Γ(α + nX̄n)
exp{(α + nX̄n)λ− (β + n)eλ}; α, β > 0.

(2.4)

We have the cumulant generation function of the Gamma/Poisson model in
closed form give as EGP (etλ|X̄n) ∝ log(Γ(α + nX̄n + t)) − t log(Γ(β + n)),
hence the posterior expectation and variance are given by

EGP (λ|X̄n) = Ψ(α + nX̄n)− log(β + n); VGP (λ|X̄n) = Ψ
′
(α + nX̄n).

(2.5)

On the other hand, we consider a Cauchy prior for the natural parameter
λ = log(θ)

pC(λ) =
β

π[β2 + (λ− ν)2]
, (2.6)

with parameters of location and scale ν and β respectively, the posterior
distribution of the C/P model is

fCP (λ|X̄n) =
exp

{
nX̄nλ− neλ − log

(
β2 + (λ− ν)2

)}

p(X̄n)
, (2.7)

where p(X̄n) is the predictive marginal. Approaches to the approximation
of p(X̄n) are the laplace’s method, the rejection method and Markov Chain
Monte Carlo (MCMC) methods. We can see that the posterior (2.7) has the
form

fCP (λ|X̄n) = exp {θy − nM(θ) + ρ(θ)− c(y)} (2.8)

where c(y) = log(p(X̄n)), ρ(θ) = log(pC(λ)), θy = nX̄nλ and M(θ) = eλ.
Pericchi, L. R., Sanso, B. and Smith, A. F. M. (1993) show that posterior
distributions that have the form (2.8) belong to the exponential family.
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3 Computations with Cauchy and Conjugate Priors

Because the Cauchy/Poisson model has only one parameter, we can use
the rejection method to find the posterior moments of this model (see
Gamerman, D. and Lopes, H. F. (2006)). It is clear that the Cauchy den-
sity is an envelope, and it is simple to generate Cauchy distributed samples,
so the method is well defined and feasible. The rejection method proceeds
as follows:

1. Calculate M = f(X̄n | λ̂).
2. Generate λj ∼ pC(λ).
3. Generate Uj ∼ uniform(0,1).
4. If MUj pC(λj) < f(X̄n |λj) pC(λj), accept λj . Otherwise reject λj and

go to Step 2.
5. Return to step 1. and repeat, until the desired sample {λj , j = 1, ..., 10000}

is obtained. The members in this sample will then be random variables
from fCP (λ|X̄n).

We use Monte Carlo Methods for the posterior moments of the Cauchy/Poisson
model.
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Figure 1 Posterior Expectation and Posterior Variance of the Cauchy/Poisson (C/P)
and Gamma/Poisson (G/P) posterior models
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In Figure 1 the MLE is kept fixed at log(X̄n) = 0 and the prior loca-
tion is moved to create a conflict between data and prior. With a Gamma
prior the posterior expectation is unbounded. We can see that the pos-
terior expectation of the Cauchy/Poisson posterior model is bounded. In
other words, when prior and likelihood information are in conflict, the pos-
terior expectation of the Cauchy/Poisson tends to MLE. In contrast to the
Gamma/Poisson

model, the posterior variance with the Cauchy prior is not monotonic in
the conflict between the MLE and prior location.

Now, we show the Polynomial Tails Comparison Theorem presented in
Fúquene, J. A., Cook, J. D. and Pericchi, L. R. (2009). In order to decide if
a Cauchy prior is robust with respect to a Poisson likelihood, the following
theorem is useful and easy to apply.

Let f(λ) be any likelihood function such that as |λ| → ∞
∫

|λ|>m
f(λ) dλ = O(m−2−ε). (3.1)

For this paper f is a Poisson distribution. Define

c(λ; µ) =
b

π(b2 + (λ− µ)2)
(3.2)

for some b > 0. This is the Cauchy PDF with center µ and scale b. Denote
by πC(λ|data) and πU (λ|data) the posterior densities employing the Cauchy
and the Uniform prior densities respectively. Applying Bayes rule to both
densities, it yields for any parameter value λ0 the following ratio:

πC(λ0|data)
πU (λ0|data)

=
∫∞
−∞ f(λ) c(λ;µ) dλ

c(λ0;µ)
∫∞
−∞ f(λ) dλ

.

Theorem 3.1. For fixed λ0,

lim
µ→∞

∫∞
−∞ f(λ) c(λ;µ) dλ

c(λ0;µ)
∫∞
−∞ f(λ) dλ

= 1. (3.3)

In other words, when there is a conflict between prior information and the
sample information, the Cauchy prior effectively becomes an uniform prior,
and in this precise sense the prior information is discounted. We need that
the Poisson likelihood to be of order (m−2−ε) in order to use Theorem 3.1.

Therefore, let m > 0 be such that ∀λ > m,
λ

n
+ X̄nλ < exp(λ), so we

have that
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exp(λ + nX̄nλ) < exp(n exp(λ))

exp(nX̄nλ)
exp(n exp(λ))

<
1

exp(λ)

hence

∫ ∞

m

exp(nX̄nλ)
exp(n exp(λ))

dλ <

∫ ∞

m

1
exp(λ)

dλ = − 1
exp(λ)

|∞m =
1

exp(m)
.

Furthermore

lim
m→∞m2+ε

∫ ∞

m

exp(nX̄nλ)
exp(n exp(λ))

dλ = lim
m→∞

m2+ε

exp(m)
= 0 (3.4)

On the other hand, for λ < m < 0

∫ m

−∞
exp(nX̄nλ)

exp(n exp(λ))
dλ <

∫ m

−∞
exp(nX̄nλ)dλ =

1
nX̄n

exp(nxλ)|m∞ =
exp(nX̄nm)

nX̄n

Furthermore

lim
m→∞m2+ε

∫ m

−∞
exp(nX̄nλ)

exp(n exp(λ))
dλ = lim

m→∞
m2+ε exp(nX̄nm)

nX̄n
= 0 (3.5)

From 3.4 and 3.5, when m →∞,

∫ ∞

|λ|>m

exp(nX̄nλ)
exp(n exp(λ))

dλ = O
(

1
m2+ε

)
.

Because of the Poisson likelihood is of order (m−2−ε), we can use the
Polynomial Comparison Theorem to find the behavior of the posterior ex-
pectation of the Cauchy/Poisson model. Hence we have the following result:

Corollary 3.1. The posterior expectations for the Cauchy/Poisson and
Gamma/Poisson posterior models satisfy the following:

1. Robust result:
lim

ν→±∞ECP (λ |X+) ≈ λ̂− 1

2neλ̂
. (3.6)
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2. Non-robust result:

lim
EG(λ)→±∞

EGP (λ |X+) → ±∞. (3.7)

respectively.

Note: the limit (3.6) is approximately equal to the MLE.

Proof. Given the Polynomial Tails Comparison Theorem, we can use the
uniform prior instead of the Cauchy prior when ν → ±∞ for the Poisson
likelihood, the generating function for the Cauchy/Poisson model is

lim
ν→±∞ECP (etλ|X̄n) =

∫∞
−∞ exp

{
nX̄nλ− neλ + tλ

}
dλ

∫∞
−∞ exp

{
nX̄nλ− neλ

}
dλ

, (3.8)

after of the transformation λ = log(θ/(1− θ)), (3.8) is

lim
ν→±∞ECP (etλ|X̄n) =

Γ(nX̄n + t)
ntΓ(nX̄n)

, (3.9)

hence
lim

ν→±∞ECP (λ|X̄n) = Ψ(nX̄n)− log(n), (3.10)

the approximation of the Digamma function (Abramowitz, M. and Stegun, I.
(1970)) is

Ψ(z) ≈ log(z)− 1
2z
−O(z−2), (3.11)

hence

lim
ν→±∞ECP (λ|X̄n) ≈ log(nX̄n)− 1

2nX̄n
−O((nX̄n)−2)− log(n). (3.12)

With the Gamma prior, EG(λ) ≈ log(α/β)− 1/2α−O(α−2). We can see
that EG(λ) →∞ as α →∞ and EG(λ) → −∞ as β →∞, the approxima-
tion of the posterior expectation for the conjugate G/P model is

EGP (λ|X̄n) ≈ log(α + nX̄n)− 1
2(α + nX̄n)

−O((α + nX̄n)−2)− log(β + n)

and EGP (λ|X̄n) →∞ as α →∞ and EGP (λ|X̄n) → −∞ as β →∞.
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4 Illustration

This example is taken from the blog called “Introduction to Bayesian Think-
ing” of Jim Albert (available electronically http://learnbayes.blogspot.com).
Suppose we are interested in learning about the proportion of official at-bats
that are home runs, called the home run rate, λ, for Derek Jeter1 before the
start of the 2004 season. Suppose our prior beliefs are that the median is
equal to 0.05 and the 90th percentile is equal to 0.081. On the other hand,
the likelihood information is based in the number of at-bats and home runs
hit by Jeter in the 2004 season.

We can obtain this data in jeter2004 contained in the LearnBayes package
available from the Comprehensive R Archive Network at http://CRAN.R-
project.org. We have with this information that Jeter obtains Σn

i=1Xi = 23
home runs in n = 643 at-bats.
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Figure 2 Cauchy/Poisson and Gamma/Poisson when prior and likelihood are consistent.

1Derek Sanderson Jeter is an American professional baseball player considered to be
one of the best players of his generation.
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Here the two priors that match this information are Cauchy and Gamma.
For the Gamma prior the parameters are α = 6 and β = 113.5, in the Log-
Odds scale the expectation and scale of the Gamma prior are respectively
Ψ(6) − log(113.5) = −3.02 and

√
Ψ′(6) = 0.42. For the Cauchy prior the

location is the same as in Gamma prior and the scale can be calculated as
β = (log(0.05) + 3.02)/ tan(π(0.9− 1/2)) = 0.16.

Figure 2 displays the Cauchy/Poisson and Gamma/Poisson posterior mod-
els. In this figure we can see that the posterior and likelihood are very simi-
lar. In other words, when the prior and likelihood information are consistent
for the Poisson likelihood the results are approximately equal with either
Cauchy or Gamma priors.
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Figure 3 Cauchy/Poisson and Gamma/Poisson when prior and likelihood are in conflict.
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On the other hand, suppose that Jeter during the 2004 season hits 30 home
runs in 120 at-bats. In this case, Figure 3 displays the situation of conflict be-
tween prior and likelihood information. We can see that the Cauchy/Poisson
model is more related with the sample data. In contrast, the weight of the
Gamma prior is higher than in Cauchy/Poisson model. Figure 3 illustrates
how the weight of the prior in the conjugate case is very high when prior
and likelihood are in conflict.

5 Concluding remarks

1) The Cauchy prior in the Cauchy/Poisson model is robust but the Gamma
prior in the conjugate Cauchy/Poisson model for the inference of the Log-
Odds is not.
2) We can use the rejection method to calculate easily the posterior mo-
ments of the Cauchy/Poisson model.
3) This approach has major application to several areas including for exam-
ple the Poisson model with extra variation in Bayesian methods for ecology
or in a poisson model parameterized in terms of rate and exposure.
4) Finally, the use of a robust cauchy prior in the Cauchy/Poisson model with
a hierarchical structure may be even more important, recent results of robust
hierarchical models for a normal likelihood are shown in
Perez, M. E. and Pericchi, L. R. (2009).
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Fúquene, J. (2009), Robust bayesian priors in clinical trials: an R package for practitioners,
Biometric Brazilian Journal 27, 4, 627643.
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