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Abstract

The Consumer Price Index (CPI) for Puerto Rico is a very complex time series with
high frequency data. The traditional time series methodology require at least a preliminary
transformation of the data to get stationarity. On the other hand, the Robust Bayesian
Dynamic Models (RBDM) do not assume a regular pattern and stability of the underlying
system (CPI) but can include points of statement breaks. In this paper, we estimate the
Puerto Rico’s CPI using a RBDM with observational and states variances to model the out-
liers and structural breaks in the time series. The results will be compared with those for
the Economic Activity Index (EAI), another important economic indicator.

Keywords: Dynamic Models, Consumer Price Index , Bayesian Robustness.

1 Introduction

We are working with the historical series of two economic indexes widely used to describe the
economic situation of a country: the Consumer Price Index (CPI) and the Economic Activity
Index (EAI). The CPI is produced and published by the Department of Labor and Human
Resources (DTRH) and the EAI is produced and published by the Government Development
Bank (GDB) of Puerto Rico. The CPI represents the average monthly change in prices of the
items and services that urban families usually buy, and it is used to study the behavior of
inflation. The CPI began as an index of cost of living in Puerto Rico, published as the Index of
Cost of Life for the Families of Workers (Department of labor and human resources (2008)), and
was developed in the early years of the 1940’s as an index of cost of living for working families.
This index was reviewed approximately every ten years. For the first time, in the Study of Income
and Expenses of 1977, information was collected about the urban families in Puerto Rico, not

∗Department of Applied Mathematics and Statistics Jack Baskin School of Engineering University of California,
Santa Cruz, USA. jfuquene@soe.ucsc.edu

†Institute of Statistics, School of Business Administration, University of Puerto Rico, Rı́o Piedras Campus.
PO Box 23332, San Juan, Puerto Rico 00931-3332. Both authors were supported by PII grant - School of Business
Administration, UPR-RRP.

1



only of working families, including the self-employed and the pensioners, among others. The
use of the original index was discontinued in 1980. With the new information collected in 1977,
a new index was born, the index of prices to urban consumers, widely known as the Consumer
Price Index (CPI). After the Study of 1977, Study of Income and Expenses is done again in the
years 1999-2003. Since the elapsed time between studies was more than twenty years, in 1990 a
few adjustments to the items and services included in the basket that makes up the CPI were
made, including the addition of new products. The continuing revision of the index is extremely
important so that it reflects accurately the changes in tastes and preferences of the population,
as well as the inclusion of new products in the market that are not represented in the previous
basket. A major change in the CPI calculation methodology is implemented in March 2010,
incorporating the use of the geometric mean for the aggregation of prices, a measure used by
the majority of countries, including the United States. Currently, the base year for the basket
of goods for the CPI is the year 2006 (the value of the CPI for 2006 is 100). Previously, it
was 1984 and then the year 2000. This basket is composed of the following major groups: food
and beverages, housing, apparel, transportation, medical care, entertainment, education and
communication, and other items and services. These groups are similar to the ones in the United
States1 basket. The Economic Activity Index (EAI) the Government Development Bank, on
the other hand, is a monthly index that includes the behavior of four economic indicators: total
of salaried employment (thousands), sale of cement (million bags), fuel consumption (millions
of gallons) and electricity generation (million KWH). Until March 2012, one of the indicators
was electrical energy consumption, but it was replaced since then by electricity generation.
The. GDB attributed this change to ”the electricity generation data is obtained in a more
timely manner, is more reliable because they have fewer revisions, and there is a slightly higher
correlation with the Gross National Product (GNP) of Puerto Rico.”(Government Development
Bank for Puerto Rico (2012)) GDB reported that the correlation of this new index with the
GNP is 0.97, which means that they are highly correlated.

The CPI and the AEI have had different abrupt changes in the last years. Therefore, it
is interesting to have a model that allows the detection of these changes in both indexes. In
this paper we propose to model the CPI and the AEI using a robust Bayesian Dynamic Linear
Model (RBDM). This model permits to take into account not only the outliers and structural
breaks of the historical series, but also to do posterior inference using this Bayesian approach.
As the CPI and AEI are two important measures of the economy, we will also investigate the
relationship between the changes the two series have had in Puerto Rico.

The paper is organized as follows. Section 2 shows the RBMD prior variances specification
for the RBDM. Section 3 presents the RBDM and an alternative approach in a motivating
example. Section 4 is devoted to modeling the CPI and the AEI. Finally we have the conclusions
and remarks in Section 5.
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2 Model Specification and modelling outliers and structural breaks

A Dynamic Linear Model (DLM) is specified (see Prado & West (2010)) by the set of equations:

yt = F tθt + νt νt ∼ N(0, Vt), (1)
θt = Gtθt−1 + ωt ωt ∼ N(0,Wt),

t = 1, ...T . The specification is given by the prior distribution for the initial state θ0.
This is assumed to be normally distributed with mean m0 and variance C0. yt and θt are m
and n-dimensional random vectors and Ft, Gt, Vt and Wt are real matrices of the appropriate
dimension. yt is the value of an univariate time series at time t, while θt is an unobservable state
vector. On the other hand, the scaled Beta2 prior for the precision λ = 1/τ2 is the following:

π(λ) =
Γ(q + p)
Γ(q)Γ(p)

β
(βλ)q−1

(1 + βλ)p+q ; λ > 0 (2)

where small values of β are considered in order to have heavy tails priors for robust inference.
This paper consider the Student-t density coupled with the scaled Beta2 (see Appendix B) for
modelling the observational and states variances in RBDM (see Fúquene, Pérez & Pericchi
(2012)). Therefore let θ ∼ Student-t(µ, τ, υ) where υ are the degrees of freedom, µ the location
and τ the scale of the Student-t density:

π(θ|τ2) =
k1

τ

(
1 +

1
υ

(
θ − µ

τ

)2
)−(υ+1)/2

, υ > 0,−∞ < µ < ∞,−∞ < θ < ∞, (3)

where k1 =
Γ((υ + 1)/2)
Γ(υ/2)

√
vπ

. We have that π(θ) =
∫∞
0 π(θ|τ2)π(τ2)dτ2 therefore

π(θ) =





βqν/(θ − µ)q+1/22F1(p + q, q + 1/2, (υ + 1)/2 + p + q, 1− βν/(θ − µ)2) if θ 6= µ,

k1Be(q + 1/2, p + v/2)/Be(p, q) if θ = µ.

with 2F1(a, b, c, z) the hypergeometric function (see 15.1.1 of Abramowitz & Stegun (1970))
and we have that π(θ) is the Student-t-Beta(υ,p,q,β) (see Fúquene et al. (2012) for the proof of
this result). For example if υ = p = q = 1 we have the Student-t-Beta2-Beta2(1,1,1,β)) such as:

π(θ) =
1

2
√

β

(
1 +

|θ − µ|√
β

)2 (4)

We can see in Figures 1 and 2 the student-t-Beta(1,1,1,β) prior has heavier tails than the
Cauchy prior. That means these priors can detect outliers even far from to these obtained with
student priors. Also, using these priors a simple Gibbs sampler can be used because all full
conditional densities in the gamma hierarchical parameters have gamma distributions.
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Figure 1: Comparison of the Student-t-Beta2(1,1,1,1) ,Cauchy(0,1), Normal(0,2.19) priors.
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Figure 2: Comparison of the tails of the Student-t-Beta2(1,1,1,1) ,Cauchy(0,1), Normal(0,2.19)
priors.

4



In order to model the CPI we use the Student-t-Beta(υ,q,p, 1
β ) (using the Beta2 prior for the

precision λ = 1/τ2). Wt,i denotes the ith diagonal element of Wt,i, i = 1, ..., n the hierarchical
Student-t-Beta(υ,q,p, 1

β ) prior can be summarized such as:

V −1
t =λyωy,t, W−1

t,i =λθ,iωθ,ti ,

λy|q ∼ Gamma(q, (βρy)−1), λθ,i|q ∼ Gamma(q, (βρθ,ti)
−1),

ωy,t ∼ Gamma(υ/2, 2/υ), ωθ,ti ∼ Gamma(υ/2, 2/υ),
ρy ∼ Gamma(p, 1), ρθ,ti ∼ Gamma(p, 1),

For each t, the posterior distribution of ωy,t (i.e. ωθ,ti) contains the information of outliers
and abrupt changes in the states. Values of ωy,t (i.e. ωθ,ti) smaller than one indicate possible
outliers or abrupt changes in the states (See Petris, Petrone & Campagnoli (2010)). A Gibbs
sampler is implemented using the posterior distribution of parameter and states of the model
specified above.

We have the annual Consumer Price Index in Puerto Rico on a log-scale in Figure 3.
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Figure 3: Annual Consumer Price Index in Puerto Rico on a log-scale, 1984-2010.

The natural choice for modelling the logarithm of the CPI using a DLM is a local linear trend
model or also called linear growth model which fit the trend and slope of the CPI logarithm.
The linear growth model is the following:
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Yt = µt + νt, νt ∼ N(0, Vt), (5)

µt = µt−1 + ξt−1 + ωt,1, ωt,1 ∼ N(0, σ2
t,µ), (6)

ξt = ξt−1 + ωt,2, ωt,2 ∼ N(0, σ2
t,ξ), (7)

with uncorrelated errors νt, ωt,1 and ωt,2. This is a DLM with:

θt =
[

µt

ξt

]
, G =

[
1 1
0 1

]
, Wt =

[
σ2

µ,t 0
0 σ2

ξ,t

]
, F =

[
1 0

]
.

3 The Robust Bayesian Dynamic model for the CPI

In this section we implement the proposed model. First a motivating example is showed where
we compare the proposed model with the usual Bayesian robustness approach. Second we apply
our approach to the CPI and AEI indexes and we find that in the two time series the changes
on the time are very related. Finally during the years 2005 and 2010 the tow model is analyzed.

3.1 The Robust Bayesian Dynamic model for the CPI

We implement the proposed model for modelling the CPI and it is compared with the usual
Bayesian strategy where the observational and states precisions of the DLM have gamma dis-
tributions:

V −1
t =λyωy,t, W−1

t,i =λθ,iωθ,ti ,

λy ∼ Gamma(10000, 10000), λθ,i ∼ Gamma(10000, 10000),
ωy,t ∼ Gamma(2, 1/2), ωθ,ti ∼ Gamma(2, 1/2),

in other words, we use a Student-t with four degrees of freedom and a non-informative
Gamma for modelling the outliers and changes in the variance states. The choice ν = 4 degrees
of freedom is not new. For example Gelman (2004) recommend the Student-t prior with four
degrees of freedom in order to obtain robustness in Bayesian applications. For the proposed
model we use a Student-t-Beta2-Beta2 where p = q = 1, ν = 4 and 1/β = 10000 for the
posterior robustness inference. The Figures 4 display the proposed model we can see there is
an outlier at 2000. The trend shows changes in 1990 and 2001 and the slope has a change
in 2003. On the other hand using the usual objective approach according to the results (See
Figure 5) there are not changes in the states (tend), level (slope) and observations (outliers).
The proposed model has taken into account not only the outliers but also the structural breaks
the logarithm of the CPI has. Using the usual approach (gamma densities for the observational
and states precisions) it is impossible to detect the changes, which are very obvious in the series
data.
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Figure 4: Outliers and structural breaks in the logarithm annual Consumer Price Index in Puerto
Rico using the robust approach
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Figure 5: Outliers and structural breaks in the logarithm annual Consumer Price Index in Puerto
Rico using the usual approach
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4 Bayesian Dynamic Robust Model for the CPI

The motivating example shows how the proposed model works. However, the more interesting
case is the monthly series of the CPI. Since the CPI and AEI indexes could be related, we apply
the proposed model for both series, in order to have a broader analysis of the changes in the
CPI during the period studied.

Figure 6 displays the results using the proposed model for the CPI for the period of January
1980 to December 2012. Important remarks can be made. The residuals in the bottom of Figure
6 are given by ε̂t = yt−E(Fθt|y1:T ). By looking at the residuals it can be seen there is only one
outlier in January 2009. The slope is dynamically changing but without sudden jumps.

The trend has different jumps, the most dramatic one in September 2005 with E(ωθ,t1 |y1:T ) =
0.07 and some others abrut changes in the precedent years. This dramatic change could have
been an ”alarm” for the economic recession Puerto Rico is facing since 2006. Other dramatic
changes are found in May 1980, July 1989 and September 1990. The structural break of 1980
could be tied to the changes in the methodology to compute the CPI, as discussed in the Intro-
duction. The change in the trend of the CPI at the years 1989 and 1990 could be related to the
implementation of the ”Joint Committee on Taxation” in the United States, and its effect on
the island.

Figure 7 shows that the abrupt changes in the trend for the EAI are much related with those
found in the CPI. In particular, for the EAI the most dramatic ones are presented in September
1989, December 1989, July 1996, September 1998 and December 1998. Figure 8 displays the
relationship between the indexes for the periods 2000-2005 and 2005-2010. The abrupt changes
may be the consequence of the economic crisis that Puerto Rico has been suffering since 2006.
In particular, the changes in the period 2000-2005 for the two time series are very similar.
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Figure 6: Outliers and structural breaks in the logarithm monthly Consumer Price Index in
Puerto Rico
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Figure 7: Outliers and structural breaks in the logarithm monthly Economic Activity Index in
Puerto Rico using the usual approach
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Figure 8: Comparison structural breaks for the monthly Consumer Price and Economic Indexes
in Puerto Rico
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5 Conclusions

In this paper we present a Bayesian Dynamic Robust Model for the CPI and the EAI. We fitted
a linear trend model or also called linear growth model with robust priors for the distributions
of the state and observational precisions errors. The Bayesian dynamic robust model has the
quality to detect outliers and historical structural breaks. The changes of the CPI trends are
associated with those changes obtained for the EAI series. In fact, the structural changes in
both series have a contextual historical and economical meaning. Finally, the proposed model
has the feature that it produces credible intervals that are not constant over time.
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A Details for the full conditional computing

This appendix presents the MCMC scheme we use in the paper.

• FFBS algorithm for the states:

For the model (7) we need to define the Kalman Filter equations (see for example Prado
& West (2010)). Let m0 and C0 (known) with (θ0|D0) ∼ N(m0,C0), also (θt|Dt−1) ∼
N(at,Rt) with at = Gtmt−1 and Rt = GtCt−1G

′
t; (yt|Dt−1) ∼ N(f t, Qt) with f t =

F
′
tat; and Qt = F tRtF t + V t; and finally (θt|Dt) ∼ N(mt, Ct) with mt = at + Atet,

Ct = Rt −AtQtA
′
t, At = RtF tQ

−1
t , and et = yt − f t. The FFBS works for the model

(2) as follow:

1. Use the Kalman Filter equations to compute mt, at, Ct and Rt for t = {1, 2..., T}.
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2. At time t = T sample θT from N(mt, Ct)
3. For t = {T − 1, T − 2..., 0} sample θt from N(m∗

t , C
∗
t )

m∗
t = mt + Bt(θt+1 − at+1) C∗

t = Ct −BtRt+1B
′
t (8)

where Bt = CtG
′
t+1R

−1
t+1.

• Full conditionals for the variances in the DLM.

For example the full conditional1 for λy is given by:

π(λy|...) ∝
T∏

t=1

λ1/2
y exp

{
−λyωy,t

2
(yt − Ftθt)2

}
· λq−1

y exp {−βρyλy} , (9)

hence,

λy|... ∼ Gamma
(

q +
T

2
,
1
2
SSy∗ + βρy

)
(10)

where SSy∗ =
∑T

t=1 ωy,t(yt − Ftθt)2. Now, we make a summary of all the full conditional
distributions.

λy|... ∼Gamma
(

q +
T

2
,
1
2
SSy∗ + βρy

)
, λθ,i|... ∼Gamma

(
q +

T

2
,
1
2
SS∗θ,i + βρθ,ti

)

where SS∗θ,i =
∑T

t=1 ωθ,ti(θti − (Gtθt−1)i)2 for i = 1, 2, ..., n;

ωy,t|... ∼Gamma
(

υ + 1
2

,
υ + λy(yt − Ftθt)2

2

)
,

ωθ,ti |... ∼Gamma
(

υ + 1
2

,
υ + λy(θti − λθ,i(Gtθt−1)i)2

2

)

ρy|... ∼Gamma (p + q, βλy + 1) , ρθ,ti |... ∼Gamma (p + q, βλθ,i + 1) ,

for i = 1, ..., n and t = 1, ...T . Given all the unknown parameters, the states of the DLM
are generated using the forward filtering backward sampling given in Fruwirth-Schnatter
(1994) which is practically a simulation of the smoothing recursions.

1The dots on the right-hand side of the conditional vertical bar in π(λy|...) denote that for every other random
variable in the model except λy
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B Scaled Beta 2 density

A Beta2 random variable is equal in distribution to the ratio of two gamma-distributed
random variables having shape parameters p and q and common scale parameter β:

τ2 ∼ Gamma(p, β/ρ) (11)
ρ ∼ Gamma(q, 1) (12)

where Gamma(a, b) denotes the Gamma distribution:

p(x|α, b) =
1

Γ(α)βα
xα−1 exp{−x/β} a > 0, b > 0, (13)

with β the scale parameter. The scaled Beta2 prior can be defined such as:

π(τ2) =
Γ(p + q)
Γ(p)Γ(q)

1
β

(
τ2

β

)p−1

(
1 +

τ2

β

)p+q ; τ > 0. (14)
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