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Abstract

A useful technique from the subjective Bayesian viewpoint, suggested by Spiegelhalter
et al. (1994), is to ask the subject matter researchers and other parties involved, such as
pharmaceutical companies and regulatory bodies, for reasonable optimistic and pessimistic
priors regarding the effectiveness of a new treatment. Up to now, the proposed skeptical
and optimistic priors have been limited to conjugate priors, though there is no need for this
limitation. The same reasonably adversarial points of view can be taken with robust priors.
A recent reference with robust priors usefully applied to clinical trials is in Fuquene, Cook,
and Pericchi (2009). Our proposal in this paper is to use Cauchy and intrinsic robust pri-
ors for both skeptical and optimistic priors leading to results more closely related with the
sampling data when prior and data are in conflict. In other words, the use of robust priors
removes the dogmatism implicit in conjugate priors.
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1 Introduction

Clinical trials are contentious. Pharmaceutical companies are eager to show that their new drug,
on which they may have been invested millions of dollars, is a substantial improvement over the
current treatment. On the other hand, government regulatory agencies take the opposite view
and ask for substantial evidence that the new drug is not less effective than the current standard.

Bayesian statistics provides a useful technique for modeling adversarial positions by using
two prior distributions on the parameters of interest. One, the optimistic prior, corresponds to
positive expectations. The other, the pessimistic prior, corresponds to a more skeptical position.
To be more specific, let us consider the following one-sided hypothesis test:

H0 : θ ≤ 0, vs H1 : θ > 0. (1)
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Part of the clever proposal by Spiegelhalter et al (2004) is to assume two priors, πS and πO,
such that

PS(H0) =
∫ ∞

0
πS(θ)dθ = 0.05, and, PO(H0) =

∫ ∞

0
πO(θ)dθ = 0.95. (2)

In words, the skeptical position (say the government regulatory body attitude) is to give only
5% to the improvement (i.e H1), but the optimistic position gives it as much as 95% probability
to the improvement (the investigator position). If under both priors, the posterior probability
of H1 is bigger than 95%, that is if under the skeptical prior P (H1| Data , πS) > 0.95, then it
is safe to decide in favor of H1. On the other hand, if both priors conclude that there is no
improvement, that is P (H0| Data , πO) > 0.95, it is safe to decide in favor of HO.

This approach is intuitively satisfying. However, this framework may be overly cautious
lead to an enormous delay in the decisions. The implementation proposed in Spiegelhalter et
al (2004) uses conjugate priors, which lead to simple computations. However, we show in this
article that we may preserve the useful framework of skeptical and optimistic priors without the
relative dogmatism inherent in conjugate priors.

Pericchi an Smith (1992) showed some aspects of the robustness of the Student-t prior for
a normal location parameter and provided approximations to the posterior moments in the
model Student-t/normal. The Cauchy prior, as a Student-t with one degree of freedom, can be
used in this context as well. However, for normal log-odds there is a robust prior proposed by
J. O. Berger (Berger 1985) that leads to a closed form posterior and moments, a sort of the
“best of both worlds.” On the other hand, the “intrinsic prior” was obtained in (Berger and
Pericchi 1996) as the implicit prior to which the arithmetic intrinsic Bayes factor converges and
is a limiting case of Berger’s prior.

2 Illustration: Skeptical and Optimistic Robust Priors

A useful suggestion under the subjective Bayesian viewpoint, taken by Spiegelhalter et al. (1994),
is to ask the subject matter researchers, for reasonably optimistic and pessimistic priors (regard-
ing the effectiveness of a new treatment). On the log-odds scale, a skeptical prior on the amount
of improvement has mean zero (i.e. no difference between treatments, λ = 0) and a substantial
probability that the new treatment is not better. The prior scale is assessed in reference to an
optimistic hypothesis λH . Then a small probability ξ, is assessed, for example ξ = 0.05, that the
effect of the treatment is equal or better than λH . For the Cauchy prior, the skeptical param-
eters are very easy to assess. The location µ is zero and the scale β = λH/ tan(π(ξ − 1/2)). In
Fuquene, Cook and Pericchi (2009) other robust heavy tailed priors are considered, apart from
the Cauchy, and several mathematical results are presented. Two such priors are the Intrinsic
Prior, discovered by Berger and Pericchi (1996) and the so called Berger’s prior, Berger (1985).
There is an unexpected and close relationship between the Intrinsic and Berger’s prior, and for
the most part we present the results for the Intrinsic prior, for which the location is zero and
the scale, τ , is found by solving the following equation
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∫ λH

−∞

1
2
√

π

1− exp
{
−(λ− µ)2

τ2

}
(λ− µ)2/τ

dλ = 1− ξ. (3)

Example: The following example is adapted from Spiegelhalter, Abrams, and Myles (2004),
Wiley, page 69, of normal log odds coupled with a normal sceptical prior (with the current data).
Alternatively, we assume heavy-tailed Cauchy and intrinsic priors, with the same location.

Suppose the normal, Cauchy, and intrinsic sceptical priors with mean log(OR)=0 and with
a 95% interval running from 50% reduction in odds of death (log(OR) = -0.69) to a 100%
increase (log(OR) = 0.69). On a log(OR) scale, this prior has a 95% interval from -0.69 to
0.69 and so has a standard deviation 0.69/1.96 = 0.35 (for ξ = 0.025) and hence the number
prior of observations is n0 = 4/0.352 = 32.3. For Cauchy and intrinsic priors the scale is
0.05 and 0.06 respectively. We use the normal approximation for binary data for the log-odds
with the approximate standard error recommended in Spiegelhalter, Abrams, and Myles (2004)
for 2 × 2 tables, following their suggestion of an standard error of the likelihood normal and
normal/normal posterior model equal to σ = 2.

Suppose that the evidence from study about 30-day mortality was 26/97 on control and
13/193 on new treatment. If the ratio of the odds of death following the new treatment to the
odds of death on the conventional: OR< 1 therefore favors the new treatment. We have that
the estimated log(OR) is X̄n = −1.6 (OR=0.2 or 80% risk reduction) with estimated standard
error 0.36 and n = 4/0.362 = 30.5 approximately the same weight of the prior. We use the R (R
Development Core Team 2009) package named ClinicalRobustPriors, available from the Com-
prehensive R Archive Network at http://CRAN.R-project.org/package=ClinicalRobustPriors,
which can be used to compute probabilities and figures for the prior, likelihood and posterior
models. The posterior mean in the normal/normal model is (n0µ + nX̄n)/(n0 + n) = −0.77
with standard deviation σ/

√
n0 + n = 0.25, the estimated odds ratio is e−0.77 = 0.46 or 54%

risk reduction. In the Cauchy/normal and intrinsic/normal models the posterior mean is -1.38
(e−1.48 = 0.22 or 78% risk reduction) with standard deviation 0.32.

In the normal/normal an 95% credible interval on the log(OR) scale is between -1.27 and
-0.28 that corresponds to odds ratios from 0.28 to 0.75, or a 95% probability that the true risk
reduction lies between 25% and 72%. For the Cauchy/normal and intrinsic/normal posterior
models the 95% credible interval show that the true risk reduction lies between 57% and 88%.
On the other hand, the likelihood shows a risk reduction between 60% and 90%. In Figure 1
we can see that dispite the large discrepancy between the prior and data, with the Cauchy and
intrinsic priors the posterior distributions are very similar than the current data. In other words,
the normal sceptical prior is more dogmatic than the Cauchy and intrinsic skeptical priors.

As a counterbalance to the skeptical priors, Spiegelhalter et al. (1994) suggest an “enthusi-
astic” (or “optimistic” as we call it here) prior centered on the alternative hypothesis and with
low chance that the true treatment benefit negative. In this example the alternative hypothesis
is λH = −0.69 (50% risk reduction) and the low chance is ξ = 0.025.
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The scale and prior sample size are the same as with the skeptical priors. Figure 2 display the
results. The posterior mean in the normal/normal conjugate model is −1.13 (e−1.13 = 0.32 or
68% risk reduction), much closer than the −1.39 (e−1.39 = 0.24 or 76% risk reduction) of the
Cauchy/normal or intrinsic/normal models. The scale for the posterior models are 0.25 and
0.34 respectively with normal and Cauchy (i.e intrinsic) priors. However, with the Cauchy and
intrinsic optimistic robust priors the results are more closer to the likelihood.
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Figure 1: Skeptical priors, likelihoods and posterior models: normal/normal, cauchy/normal
and intrinsic/normal.
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Figure 2: Optimistic priors, likelihoods and posterior models: normal/normal, cauchy/normal
and intrinsic/normal.

3 Asymptotic Results

In this section we show that robust priors can “change their mind” more readily than conjugate
priors by looking at asymptotic properties of posterior means under each type of prior. When
both the skeptical and optimistic prior are robust, they may reach agreement more quickly than
if the two priors were not robust.

5



Consider a single sample y from a normal(θ, σ2) distribution where θ has a conjugate nor-
mal(0, τ2) prior. It is well-known that the posterior distribution on θ has mean

τ2

τ2 + σ2
y.

If we use a Cauchy(0, 1) prior rather than a normal(0, τ2) prior on θ above, the posterior
mean of θ is

y −O
(

1
y

)
as y →∞. See Cook (2010) for the derivation of this asymptotic result.

Under the normal prior, the posterior mean of θ under-estimates the data y by a constant
ratio which depends on the relative scales of the sampling distribution and the prior distribution.
Under the Cauchy prior, however, the posterior mean of θ asymptotically approaches the value
of y, independent of the scales of the sampling and prior distributions. This is illustrated by
Figure 3.

Next we consider the case of n samples yi with mean y and consider the behavior of the
posterior mean as n→∞. Under a normal(0, τ2) prior, the posterior mean is given by

1
1 + σ2

nτ2

y =
(

1− σ2

nτ2
+O

(
1
n2

))
y.

Under a Cauchy prior, however, the posterior mean is

y +
(y2 − 3)y
(1 + y2)2

σ2

n
+O

(
1
n2

)
.

The rate at which the posterior mean converges to y depends on τ in the case of the normal
prior and on y in the case of the Cauchy prior. For any value of τ , the convergence is faster
under the Cauchy prior for sufficiently large values of y.

We now obtain results for Berger’s prior that are quite similar to those above for the Cauchy
prior. If we observe n samples from a normal(θ, σ2) distribution and θ has Berger’s prior with
location 0, the posterior mean of θ is

2σ2y

(σ2 + nβ2)
(
exp

(
ny

σ2+nβ2

)
− 1

) − 2σ2

ny

where y is the sample mean of the observations as shown in Fúquene, Cook, and Pericchi (2009).
Therefore as a single sample y →∞, the posterior mean of θ is

y − 2σ2

y
+O(exp(−y2)).

Also, as n→∞, the posterior mean of θ is

y − σ2

n

2
y

+O(exp(−n)).
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These results show that for Cauchy and Berger priors, the influence of the prior diminishes
more quickly when the data are far from the location parameter of the prior. When skeptical
and optimistic priors using either of these robust distributions, the priors will reach consensus
more quickly than corresponding conjugate priors when the data are in conflict with one or other
of the priors.

Figure 3: Posterior mean of θ under robust and conjugate priors compared to empirical value
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