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SCHEDULING WITH  MULTIPLE TASKS PER JOB – THE CASE OF QUALITY 

CONTROL LABORATORIES IN THE PHARMACEUTICAL INDUSTRY 
 
1. INTRODUCTION 
During manufacturing, pharmaceutical products undergo multiple tests at the quality control (QC) 

stage to certify their purity, strength and safety. These tests are completed in parallel and the 

results serve as an essential element for legal authorities such as the Food and Drug 

Administration to approve the products for distribution.  Scheduling these tests is a complex 

problem due to the limitations on resource capability and the possibility of batching these tests to 

increase the laboratory’s efficiency.  

 Given that the amount of product (e.g. tablets) is extremely large, the term “lot” is used 

as the unit of production. Each lot consists of a single product type that requires various QC tests.  

The completion of these tests represents the "job".  There are two types of jobs that enter the QC 

laboratory planning process.  The first type is a lot that is manufactured in the plant and is waiting 

for release into packaging and final distribution.  The second type is a lot that is already in the 

market and has to be periodically retested to confirm that it has maintained the required 

characteristics.  The tests for the second type of lot, called stability tests or stability lots, have 

higher priority as these must be completed within a time window established by regulatory 

agencies. Failure to complete all the tests for a stability lot within a specified time window can 

result in significant fines and penalties.  

 The problem is complex given the constraints placed on the assignment of resources and 

due to the consideration of a job as multiple component tasks that are completed individually. 

Resources (the technicians) are constrained by their capability to perform only certain types of 

tests given their training and experience.  For example, consider the case where a lot of product 

type h has just been manufactured and samples have been sent to a laboratory for testing.  There 

are four tests that must be performed before the lot is released to the next stage. While a 

technician is available to perform one of the required tests, the other three tests have to join a 

queue and would be completed days from the time of arrival. Once all four tests have been 

performed for this job, the job is complete and the proper disposition followed (e.g., release of the 

lot for distribution).  

As in the case of semiconductor scheduling problems (Malve and Uzsoy, 2007), it is 

possible to batch multiple jobs into a single activity (machine). While in practice there is a slight 

increase in the time required to complete jobs as the number in the batch increases, this time 

increase is not significant at the planning scale used in this research (time unit is days). Therefore 

we consider the case where each batch of tests for a product type is completed simultaneously 
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without requiring additional resources or time, subject to a maximum batch size per product type/ 

test type. This is the case as the equipment used to perform the tests can be loaded with samples 

from multiple lots at the same time, and will provide separate results for each of the loaded 

samples. The time to complete these tests will not change when multiple samples are loaded in 

the machines and only one technician is required to perform the test.  

Each test requires a single technician, but not all the technicians in the laboratory are 

capable of performing every test.  The tests require from one to five days to be completed and 

tests that require up to two days are assigned to a technician who is continually assigned to the 

test. However, tests that require more than two days have "idle" time in the middle as processes 

are only performed the first day (test preparation and setup) and the last day (results analysis). For 

the sake of continuity, the same technician is responsible for first and last day activities. This 

"idle time" is not really idle, as other test tasks can be assigned to the technician, but these cannot 

break the continuity and timing of current assignments 

The scheduling problem addressed in this paper is the assignment of tests to technicians, 

considering test batching and overlapping tests.  The objective is to minimize the total  flow time, 

and the number of jobs not meeting the required time window (for stability lots).  This research 

contributes to the literature by addressing a complex scheduling problem based on a real 

industrial case. The problem considers resource assignment constrained by test specific capability 

requirements.  Furthermore, each task of the same type (i.e., product and test type) can be 

batched, but the size of this batch will be particular to each product - test type combination.  This 

is a significant difference from previous literature in batching parallel machines.  This research 

problem is highly relevant to the pharmaceutical industry and has not been previously addressed 

in the literature.  Furthermore, we present a software prototype developed for a pharmaceutical 

company where the model and solution algorithms were implemented. 

 The rest of the paper is organized as follows.  Section 2 reviews related literature in 

operations in the pharmaceutical industry and on scheduling batch processing machines with 

multiple resource types.  Section 3 provides a problem description and an example. Section 4 

describes solution approaches, while Section 5 presents computational experiments used to 

analyze the solution approaches. Section 6 describes a prototype software application developed 

for an industrial environment. Finally, Section 7 summarizes the work and presents directions for 

future work.  
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2. LITERATURE REVIEW 

While research addressing scheduling in quality assurance laboratories was not found by the 

authors, recent papers investigating batch scheduling in the pharmaceutical environment are 

numerous. The chemical and pharmaceutical industries present batching scheduling as a common 

production issue. Burkard et al. (2002) developed a mixed-integer linear programming model for 

minimizing the makespan in batch processing problems. A Tabu Search based algorithm to 

optimize the design of a single pharmaceutical process of an existing multi-purpose batch plant 

was presented by Cavin et al. (2004). Roea et al. (2005) discussed a hybrid algorithm based on 

constraint logic programming and mixed integer linear programming to solve a multipurpose 

batch process scheduling; they exemplified the algorithm with four cases including one related to 

pharmaceutical production. Mendez et al. (2006) presented a review of the state of the art in 

optimization methods for short-term scheduling of batch processes. Teunter and Flapper (2006) 

presented work to identify the best bottling alternative for produced batches in the pharmaceutical 

industry when the batches have to undergo several lengthy quality tests. Burkard and Hatzl 

(2006) investigated a heuristic aimed to minimize the makespan in batch processing problems 

occurring in the chemical and pharmaceutical industry.  A hybrid technique called partial 

parameter uniformization, which ignores values of some parameters to facilitate the solution of 

complex batch sizing and scheduling problems, was proposed by Wang and Guignard (2006).  

 The zero-wait batch is a common production process in the pharmaceutical industry.  In 

this special type of batch operation, products are processed without being stored.  Raaymakers 

and Fransoo (2000) studied multipurpose batch processes with no-wait restrictions, overlapping 

processing steps, and parallel resources.  They proposed a method, based on aggregate 

characteristics of the job set, to estimate the feasibility of completing the job set within a specific 

length of time. Raaymakers and Hoogeveen (2000) proposed a simulated annealing algorithm to 

solve a scheduling problem characterized as multiprocessor no-wait job shop problem with 

overlapping operations.  Ryu and Pistikopoulos (2007) introduced parametric programming for 

solving this problem under uncertainty. 

 Recent studies on scheduling of quality tests have been restricted to the pharmaceutical 

research and development pipeline. Colvin and Maravelias (2009) presented a stochastic 

programming framework to address the scheduling of clinical trials and the planning of the 

resources necessary to carry out these trials.  Colvin and Maravelias (2010) discussed methods for 

the solution of a multi-stage stochastic programming formulation for the resource-constrained 

scheduling of clinical trials.  
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 The literature related to scheduling batch processing machines with multiple resource 

types is extremely extensive; therefore, the focus of this paper is on recent relevant articles. First 

we review the scheduling of non-identical jobs on a batch processing machine. Azizoglu and 

Webster (2001) developed a branch and bound procedure applicable to a batch processor with 

incompatible job families and aimed to minimize total weighted completion time. Another branch 

and bound algorithm to minimize the makespan on a batch processing machine considering jobs 

with non-identical capacity requirements was investigated by Dupont and Dhaenens-Flipo (2002). 

Parsa et al. (2010) developed a branch and price algorithm to minimize makespan on a single 

batch processing machine with non-identical job sizes and limited capacity.  Hybrid algorithms 

and heuristics have received special attention from researchers to tackle this type of problem. 

Wang and Uzsoy (2002) researched the problem of minimizing maximum lateness on a batch 

processing machine with dynamic job arrivals; they combined a dynamic programming and a 

genetic algorithm to solve the problem. Melouk et al. (2004) proposed a simulated annealing 

approach to minimize makespan for a single batch-processing machine where each job has a 

corresponding processing time and size, and the machine can process the jobs in batches as long 

as its capacity is not exceeded; Koh et al. (2005) and Damodaran et al. (2006) proposed a genetic 

algorithm to solve this problem. Several heuristics to minimize the total weighted tardiness on a 

single batch process machine with incompatible job families were developed and tested by Perez 

et al. (2005). Jolai (2005) considered the problem of minimizing number of tardy jobs on a single 

batch processing machine and presented a dynamic programming algorithm. A simulated 

annealing algorithm to schedule a capacitated batch-processing machine and minimize makespan 

was proposed by Damodaran et al. (2007). Van Der Zee (2007) investigated dynamic scheduling 

to minimize average flow time for a batch-processing machine with non-identical product sizes. 

Kurz and Mason (2008) presented a polynomial time batch improvement algorithm for 

scheduling a batch-processing machine aimed to minimize total weighted tardiness with 

incompatible job families and job ready times. 

 Parallel batching machines have been studied from different approaches. Kim et al. 

(2003) presented several search heuristics and their performance in batch scheduling of parallel, 

unrelated machines with the objective of minimizing the total weighted tardiness. Koh et al. 

(2004) proposed some heuristics and genetic based algorithms to minimize total weighted 

completion time on parallel batch processing machines with arbitrary job sizes and incompatible 

job families. Balasubramanian et al. (2004) proposed two different versions of a genetic 

algorithm as well;  however, the goal of this study was to minimize total weighted tardiness. Lin 

and Jeng (2004) researched several heuristics to minimize the maximum lateness and the number 
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of tardy jobs on parallel machine batch scheduling. Two different decomposition approaches to 

minimize total weighted tardiness on parallel batch machines with incompatible job families and 

unequal ready times of the jobs were proposed by Mönch et al. (2005).  Mönch et al. (2006) 

developed a simple heuristic based on the apparent tardiness cost to minimize total weighted 

tardiness on parallel batch machines with incompatible job families and unequal ready times of 

the jobs. Malve and Uzsoy (2007) considered the problem of minimizing maximum lateness on 

parallel identical batch processing machines with dynamic job arrivals   and incompatible job 

families.  The same problem was addressed by Cheng et al. (2008), who proposed a memetic 

algorithm to minimize total weighted tardiness. A hybrid genetic heuristic to minimize makespan 

was devloped by Husseinzadeh Kashan et al. (2008).  Chung et al. (2009) considered the parallel 

batch processing machine scheduling problem which unequal ready times, non-identical job sizes, 

and batch dependent processing times; they used mixed integer linear programming to minimize 

total completion time. Yimer and Demirli (2009) demonstrated a mixed-integer fuzzy 

programming approach to reduce total weighted flowtime on parallel machines in a two-stage 

flowshop. Recently, Wang and Chou (2010) developed a compound metaheuristic to address the 

scheduling problem of parallel batch-processing machines with the objective of minimizing 

makespan.    

 

3. PROBLEM DESCRIPTION AND EXAMPLE 

The scheduling problem to be addressed in this paper is defined next. Let there be w product 

types and W  be the set of these product types. For each product type i there is a set of required 

test types Ri, and let ri = | Ri |. There are m QC technicians available in parallel, and let M be the 

set of available technicians. Each technician h is capable of performing, for product type i, a set 

of test types Yh,i. Test type k of product type i can be batched up to a maximum of xk,i tests, and xk,i 

≥ 1.  The time required to process a batch of tasks of test type k of product type i is independent 

of the particular technician and is defined as an integer number of value pk,i.  We note here that 

pk,i relates to the duration time (in days) of the test and that if pk,i  < 2, the task's actual process 

time is pk,i, but that if pk,i ≥ 2 then the task actual process time  is two.  That is, one time unit at the 

start of the task and one time unit at the end. The remaining time is available for the processing of 

other test tasks, but the same technician must start and complete a particular test task.  In other 

words, if technician g starts test task k, then technician g must finish test task k. 

There are n jobs (production or stability lots) to be processed where N = {1 …n}, and 

each job j belongs to a product type zj and is available at time aj (arrival time). Let sj relate to the 

type of the job where sj = 1 if the job is a stability lot and sj = 0 if the job relates to a production 
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lot. Let Ns be the set of all stability jobs and ns be the number of stability jobs. The test tasks for a 

job can be started at any time after its arrival.  The job is completed when all of its required test 

tasks have been completed. Let dj  be the due date for job j based on a time window D*i for 

stability jobs of product type i. Thus for a job j with product type i = zj, its due date (dj) equals aj 

+  D*i if sj = 1, dj = ∞ otherwise. 

A test task generated from a job has a due date and an arrival time equivalent to that of 

the job that generates it. Test tasks cannot be extended beyond their predefined process times.  

Thus, if a technician is assigned a task with a process time of 3 units at time 0, it cannot be 

assigned a test task of two time units to start at time 1 given that this will delay the second day of 

processing for the task already assigned. Examples of feasible and unfeasible assignments of 

tasks to a technician are presented in Figure 1. 

 

< Insert Figure 1 about here > 

 

We consider two measures of performance given their relevance to the observed cases: 

the average flow time and the percentage of late stability jobs. For each job j let cj be its 

completion time (i.e., the maximum completion time of any of its associated test tasks), tj its 

tardiness, tj = max. [cj - dj, 0], and let uj be a binary variable indicating if the job is late, uj = 1 if tj 

> 0, uj =  0 otherwise. The average flow time (F) is (sum.  j ∈ N [cj - aj]) /n and the  number of late 

stability jobs (U) is sum. j ∈ Ns [uj].  

An example is used to illustrate the problem.  Let there be three product types (w = 3) and 

the number of test per product type be r1 = 2, r2 = 3, and r3 = 1. The maximum batch size for all 

product-test types is 3 (xk,i = 3 for all i from W, for all k from Ri). The process times per product-

test type combination are provided in Table 1. Table 2 provides the product type, arrival time, job 

type (production or stability), and due date for six jobs to be scheduled (n = 6). 

 

< Insert Tables 1-2 about here> 

 

Based on the previous problem parameters, there are a total of 13 tests tasks to be 

performed (we use the term test task to indicate an operation generated by a particular job and 

differentiate it from the term test types). The list of test tasks is presented in Table 3.  There are 

three technicians (m = 3) and the set of tests that the technicians can perform is provided in Table 

4. Two possible schedules are presented in Figure 2. Each box represents the test batch assigned 

to a technician for each time period and includes information about the test task index (first row), 
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the related job (second row) and inside a parenthesis the product type, and the test type (third 

row). 

 
< Insert Tables 3-4 and Figure 2 about here> 

 

 In Schedule A, four of the eight available test tasks are started at time 0 and the test tasks 

associated with jobs 1 and 3 are batched and completed at time 6. The completion times for the 

six jobs are 6, 3, 6, 2, 11, and 6 respectively. Jobs 1, 3, and 4 are stability jobs and each is late by 

one time unit. Schedule B's main difference is an increase in the size of the test batches formed 

for technician number 3 (who is idle during time slot 3 even when it is capable of performing one 

of the available test tasks). The completion times for the six jobs are 9, 3, 9, 1, 9, and 6 

respectively. In this schedule jobs 1 and 3 are late, each by four time units. As can be noted by 

observing the values for the criteria of interest, there could be tradeoffs between schedules; 

Schedule A has more late jobs than Schedule B, but has a lower total flowtime.  

 

4. SOLUTION APPROACHES  

The capability restrictions on the technicians make it important to develop solution approaches 

that maximize their overall utilization (in practice a goal is to have all the technicians busy all the 

time). However, this must be balanced with the creation of larger test batches which may result in 

some idleness (as technicians wait for the arrival of a job to create a larger test batch) but can 

improve some of the measures of performance. In practice this idle time is used for other types of 

tasks as training and preparation of additional documentation. To support the development of 

solutions (schedules) for this problem two flexibility tracking measures are used: one related to 

the flexibility of each test task being considered and the other to the flexibility of each available 

technician. Let Z' be a set of open tests under consideration and M'  be the set of available 

technicians. For a test task g from Z' let χg be the number of technicians in M' qualified to perform 

this test task. Let τh be a measure of technician flexibility equal to the number of different test 

tasks from Z' that technician h is qualified to perform. 

  Let vk,i be the ratio of “batch” completeness for test type k of product type i, equivalent to 

the number of test tasks of that product type and test type divided by the maximum batch size 

(xk,i). Clearly a ratio of batch completeness equal to 1 or larger indicates a full test batch can be 

performed. Values less than one indicate that there is capacity to increase the batch sizes, while a 

ratio of 0 indicates that no tasks of this type are available.  
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4.1 List Scheduling Rules 

Researchers have addressed a variety of parallel machine problems using list scheduling 

techniques (e.g. Schutten 1996, Hurink and Knust 2001). List scheduling involves the creation 

and continuous updating of a list of tasks, and then the assignment of the tasks from that list (by 

their order on the list) as resources become available. Five rules are proposed for the dynamic 

creation of list of all open (and available) test tasks. 

 

• DD: Non-decreasing order of the associated job's due date (prioritizing stability jobs). 

• UT: Non-decreasing order of the remaining number of unassigned test tasks for its 

associated job. This value changes as tests related to a job are assigned to the schedule. 

• AT: Non-decreasing order of the number of available technicians capable of performing 

the task. This value changes as technicians are assigned test tasks. 

• BC: Non-increasing order of the ratio of “batch” completeness. This value changes as test 

tasks are assigned. 

• AR: Non-decreasing order of arrival. 

 

The arrival time is the tie breaking rule, followed by number of remaining unassigned open 

test tasks. In the case where tests tasks are sorted by due date, non-stability jobs are sorted by 

arrival time and placed after all stability jobs. 

 

4.2 Base Heuristic 

The base heuristic dynamically assigns test tasks to technicians based on one of the rules 

described in section 4.1, called rule λ. During the creation of the schedule, the variable time is 

updated to be the earliest time that a) a test task is available or b) a technician is available for a 

new assignment of work. Let Z' be the set of all test tasks with aj ≤ time (their associated job) and 

N' be the set of all jobs with aj > time. Note that the assignment of a test batch to a technician 

blocks the first and last time unit of the duration of the test and that only feasible assignments are 

considered (in terms of time conflicts between overlapping test tasks) during the assignment 

process. 

 

Step 1. Update time and Z'. 
Step 2. Order test tasks in Z' by rule λ. 
Step 3.  Let g be the first test task from Z', and let Q* be the set of available technicians 

qualified to perform test task g.  
Step 4. If Q' = ∅ then remove test task g from Z', add g to set L, and go to Step 3. 
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Step 5. Select the technician h from Q' by min.[τg].  
Step 6.  Let i be the product type and k be the test type of test task g. Select up to xk,i test tasks 

from Z' of product type i and test type k by their order on Z' (clearly test task g is the 
first to be selected). This test batch is assigned to technician h.  

Step 7. Remove all selected test tasks from Z' and h from Q’.  
Step 8. If Q' ≠ ∅ and Z' ≠ ∅ then Step 2. Else if N' ≠ ∅  or L ≠ ∅  then Step 1. 
Step 9. End. 
  

Step 0 updates the scheduling clock and the set of available tasks. Step 2 sorts the set of available 

test tasks. Step 3 selects the first test task from Z' (test task g) and determines which technicians 

are available and can perform test task g. Step 4 verifies there is at least one technician available 

that can perform test task g. If test task g cannot be scheduled at the current time (given a capable 

resource is not available) then g is removed from Z' and placed in a temporary set (L). Step 5 is 

reached if there is at least one technician that can perform test task g, and from those available, it 

selects the least flexible one. Step 6 schedules a test batch associated with the test task g on the 

selected technician. Step 7 removes the scheduled test task from the set of available tasks and the 

selected technician from the set of available technicians. Step 8 verifies there available test tasks 

and technicians in order to continue the process. If this condition is not met, the process checks if 

there are still un-assignable test tasks (set L) or jobs to arrive (set N’) and if this is the case, the 

process returns to Step 1, where the clock is updated. Otherwise the process ends. 

 

4.3 Wait Modification 

The wait rule results in inserted idle time by removing from consideration available jobs in order 

to make larger test batches. Having fewer tasks available at the time of the creation of the 

schedule increases the possibility that some of the technicians will be left idle. For a member of 

Z', let i be the product type, k be the test type, and j the associated job. Let β be the time of arrival 

of the next job from product type i. A test task g will be moved from Z' to Z* if the following two 

conditions apply: vk,i < 1 and β - aj < Ω, where Ω is the maximum allowed planned wait. The first 

condition considers test tasks that have capacity in the formation of test batches and the second 

condition gives a limit to how long test tasks will be put on hold for arriving jobs. The only 

modification to the Base Rule is in Step 1 which would read as: Update time and Z' and Z*. 

 

5. COMPUTATIONAL EXPERIMENTS AND RESULTS  

This section presents computational experiments designed to evaluate the performance of the 

solution approaches under various experimental conditions. The experimental conditions are 
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based on actual QC laboratory environments. The problem and solution approaches were 

implemented in Visual Basic for Applications within the Microsoft Excel’s framework.  

 

5.1 Problem Setup 

The experimental setup is guided by the observed industrial cases and by previous work in the 

literature.  We first discuss the non-experimental parameters, the number of tests per product 

type, the range of process times, the test batching quantity, the arrival time for jobs, the number 

of stability jobs, and the due date generation process. The number of tests per product type i (ri) is 

randomly drawn using a discrete uniform random variable (DU) with range 1 to 7 tests. The 

process times per test are generated by DU[1, 5], a range similar to that used by (Malve and 

Uzsoy, 2007).  Based on this process time range, the expected workload on the technicians is 1.8 

days per test task, and the workload per job is 7.2 days. The maximum number of test tasks that 

can be batched for a product type i and test type k (xk,i) is randomly drawn from the range 1 to 5 

based on typical restrictions set by the laboratory equipment and/or procedures (DU[1,5]). 

 The total workload for a problem is based on the number of jobs, number of technicians, 

the expected batch size (3 tests), and the workload per job (7.2 days): 2.4n. The duration 

(makespan) of a schedule assuming 0-idle time would be 2.4n/m. The arrival time for a job is 

determined by U[0, α] × 2.4n/m, a method similar to that used in Malve and Uzsoy (2007). The 

variable α relates to the “compactness” of the arrival distribution, and is set to 1 for all the 

experiments. The percentage of stability jobs is fixed at 50% based on the observed cases. The 

time window for stability jobs for product type i (D*i) is based on a discrete uniform random 

variable from the range 10 to 20.  

 

5.2 Experimental Setup 

The experiments aim to understand the effect of the proposed heuristics on variables that relate to 

the size of the problem and the length of the plan, the number of product types, the demand 

distribution, and the flexibility of the technicians.  The two experimental variables related to 

problem size are the number of jobs (n) and the number of technicians (m). We consider the 

number of jobs at 50 and 100, and the number of technicians at 5 and 10. Table 5 presents the 

expected schedule duration assuming no idle time. The duration ranges considered are well within 

the observed planning horizons of concern in the industry (from several weeks to multiple month 

plans). 

 

< Insert Table 5 about here > 



 11 

 

The next two experimental variables relate to the product types and demand distribution. 

The number of product types (w) is considered at 5 and 10 and two types of product demand 

distribution (pdd) are analyzed. In the first case it is assumed that all product types have equal 

demand, thus the demand percentage for all products is 1/w. In the second case the demand is 

unequal, with some product receiving a much higher demand than others. Let dt = SUM i ∈ W [i] 

and assign demand for all the product families by the following procedure: 

 
Step 0.  Let a = 0. 
Step 1.  Let a = a  + 1. 
Step 2.  Randomly select a product type with no assigned demand percentage. Let its 

demand percentage be equal to a/dt.  
Step 3.  If a < w return to Step 1. 

 

The above procedure assigns demands so that one family receives 1/dt,  another 2/dt, and so on, 

with the highest demand representing w/dt of the total.   

The final experimental variable is the degree of flexibility of the technicians, which is 

based on the expected number of tests that each resource can perform. In the low case there is a 

20% probability that a technician is capable of performing any test, and therefore the expected 

number of product-test combinations that each technician can perform is 0.8w (the 0.8 value is 

the multiplication of the average number of test per product type, 4, by 20%). In the high case 

there is 40% probability that a resource is capable of performing any test and therefore the 

expected number of product-test combinations that each technician can perform doubles. For each 

problem instance a check is made so that every product-test combination will have at least one 

technician capable of performing it, and every resource will be capable of performing at least one 

test. In the high case is also established that every test will have at least two technicians capable 

of performing it, and every technician resource will be capable of performing at least two 

product-test combinations. We performed 25 replications per experimental point resulting in 800 

problem instances. 

 

5.3 Heuristic Implementation 

The five test sorting rules are combined with the no wait and wait versions of the base heuristic. 

The no wait versions are denoted as DD, UT, AT, BC, and AR. The experiments demonstrated that 

only wait windows (Ω) of a few days provided good results. For each problem instance and rule 

we test wait windows of 1 to 3 days, and the best solution (using a Ω of 1, 2 or 3) is the solution 



 12 

of the wait version of the rule. The wait versions of the rules are denoted as DDW, UTW, ATW, 

BCW, ARW. 

 

5.3 Results for the Flowtime Criteria 

The results for the flowtime criteria are presented in Table 6. The best six performing heuristics 

are included in the table given they provide 97.9% of the best solutions found. The table presents 

the per job average flowtime and the number of instances where the heuristic generated the best 

solution. Given the possibility that more than one rule found the best solution, the sum of the 

numbers in parenthesis could exceed 25 (the number of replications), and as well, the total may 

not add to 25 as a heuristic not presented in the table generated the best solution. The AT, BC and 

BCW heuristics are the best performing rules, with AT having the best average performance in 26 

experimental combinations, BC in 5 combinations, and BCW in one combination.  

 The analysis of variance (ANOVA) technique is used to analyze the results and 

determine the significance of the main effects. We perform the analysis of variance on the error 

of each heuristic, calculated by heuristic result/ best result – 1. The ANOVA results indicated 

that all the main effects were significant. Table 7 presents the average heuristic error and the 

average number of best solutions found per experimental combination. Only the top three 

performing heuristics are included in this table to simplify the presentation.  

 

<Insert Table 7 about here> 

 

 In terms of the error, the AT heuristic is the dominating heuristic followed by BCW and 

then BC, while in terms of the percentage of best solutions found AT dominated, but is followed 

by BC. This indicates that while BC generates a higher percentage of best solutions than BCW , 

those that are not the best, have a higher error than BCW . In terms of the relationship between the 

heuristics performance and the experimental parameters, as the number of jobs increases, the 

error performance of AT and BC heuristics increase, while the error of BCW decreases. As the 

number of jobs increases the size of the actual test batches increases, improving the performance 

of BCW. In terms of the percentage of best solutions found, both of the batching rules improve 

slightly, which can be explained by the larger actual batch sizes. The performance (for both the 

error and the percentage of best solutions) of the AT and BCW heuristics improved as the demand 

was changed from balanced to unbalanced and as m increased, while it significantly worsened for 

BC. When the demand is unbalanced, some product types will have multiple units in queue which 

would be batched regardless of the rule, thus the batching rule lost some of its benefits. However, 
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waiting for jobs to arrive for those types with lower demand improves the performance of BCW. In 

regards to the number of technicians (m), as it increased the number of tests that a technician can 

perform is smaller, thus selecting by less capable provides the best solution (or close to the best 

solution). The change in the number of product types (w) had a highly significant effect on the BC 

and BCW heuristics; as it increased the performance of BC improved, while the performance of 

BCW worsened. This is explained by the fact that when the number of product types is small there 

is a higher probability that additional jobs will be arriving in the wait window, thus BCW will 

work better than BC, while when there are more product types the chances of that are smaller. In 

regards to flexibility of the technicians, as it improves, the performance of AT decreases given the 

importance of technician capabilities is of less significance, and batching (BC) becomes a more 

effective approach to sort test tasks. 

 

<Insert Table 8 about here> 

 

Table 8 presents the two way interaction between variables m and w. When the number of 

technicians is 5 and the number of product types is 10, heuristic BC works very well and has the 

smallest error (outperforming AT in both the error and percentage of best solutions). On the other 

hand, when the number of technicians is 10 and the number of product types is 5, the AT 

heuristics works very well (60% of the best solutions), followed by BCW, with BC generating only 

3% of the best solutions. These results point out that the ratio of technicians to product types is a 

factor in this problem. 

 

 5.4 Results for the number of tardy jobs criteria (stability jobs) 

The DD heuristic outperforms all other heuristics for the number of tardy jobs criteria 

(normalized to the percentage of late jobs) with an average percentage of late jobs of 11% and 

generating the best solution in 91% of the instances. The UT heuristic was the next best 

performing heuristic, with an average percentage of late jobs of 16% and generating the best 

solution in 54.6% of the instances. Clearly, in multiple instances the solution generated by DD 

had the same criteria value as the solution generated by UT. The best solution was generated by 

either DD or UT in 99% of the experimental conditions. While the experimental factors had some 

effect on performance, DD dominated under all experimental conditions.  
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6.  REAL WORLD SOFTWARE PROTOTYPE 

A prototype software based on the described model was developed using Microsoft Excel ® 

capabilities to capture and present information. The objective of the software was to aid the 

quality control planner develop the test task schedule. However, we must note that the proposed 

model/ prototype does not capture all the constraints and options. Issues as technician preferences 

for certain products/test are not captured by the model and are part of the planner decision 

process. Furthermore, the described model does not take into account equipment constraints, that 

while are not a typical problem (there are multiple sets of all the required equipment), can in 

some occasions limit the ability of scheduling lots (jobs) at the same time. Furthermore, the 

prototype software does not have the capability to consider partially completed jobs (given the 

schedule is updated every week and some jobs will be partially completed when a new schedule 

is generated). Enhancements to the prototype that will address these issues are being considered. 

 To simplify the development of the interfaces, the software is limited to 10 technicians, 

10 product types, and 100 jobs. It must be noted that some of the problem data rarely changes: the 

technicians have been with the company multiple years and the tests sets and process times have 

been validated and this values seldom change (validation processes are time consuming and 

changes require approval from regulatory agencies). However, new products are added to the 

facility and technicians get trained in existing and new products, thus there must be flexibility to 

modify the technicians capability sets and the product information. Clearly, the ability to easily 

input job information is critically important. 

 

< Insert Figures 3-5 about here > 

 

 The Excel prototype has five sheets: Start, Product_Information, 

Technician_Information, Lot_Information, and Schedules. Figures 3 to 5 have snapshots for these 

sheets. The Schedules sheet has a button that “runs” the best performing heuristics described in 

Section 3 and considering windows of 0 to 5 days. Once this is complete, a scroll-down menu has 

all the Pareto schedules, starting with those schedules with the fewest late stability jobs. The 

planner then selects the schedule to be presented in the sheet. This feature is presented in Figure 6 

as well as a table that shows the flowtime and completion time for each lot, as well as an 

indication of whether its due date was met or not. 
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7. CONCLUSIONS AND FUTURE WORK 

This paper addresses a complex scheduling problem found in pharmaceutical manufacturing. 

Quality control tasks need to be assigned to technicians with the objective of minimizing the total 

flow time and the number of jobs not meeting a required time window. Batching test tasks of 

similar types is possible, but batch sizes are particular to each product-test type combination. Five 

different heuristics are developed for the dynamic creation of the test task schedules. 

Furthermore, a variant including a wait modification is considered for each solution approach 

doubling the number of heuristics. An extensive experimental setup shows that there is not a 

dominant heuristic and that they are sensible to factors such as the size of the problem, the length 

of the planning horizon, the number of product types, the demand distribution, the number of 

technicians, and the flexibility of technicians. The best six performing heuristics provide around 

98% of the best solutions found. Moreover, a prototype software based on the presented heuristics 

is developed to help the quality control planner to define the test task schedule. 

 Future research directions include the development of models that support additional 

constraints. For instance, resource assignments can be based on the preferences and abilities of 

available technicians.  That is, if two technicians are trained to perform task g, one of them may 

be more skilled and thus should be selected for the task.  Various approaches can be used in 

determining the capabilities of technicians.  For example, a methodology similar to Otero et al. 

(2009) can be implemented to determine the capability of technicians in a particular test based on 

their level of expertise in other similar types of tests.  Furthermore, these relationships between 

known and unknown skills can be modeled as imprecise parameters using fuzzy set theory. 

 In the current research, the time required to process a batch of tasks is assumed to be 

independent of the particular technician assigned to the task.  This research can be extended to 

develop relationships between skill levels of technicians and time to complete a task.  This opens 

up opportunities to apply various techniques (e.g., artificial intelligence, statistical regression 

analyses) to develop these relationships.         
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Table 1. The process times per product type for each applicable test type. 
 

Product type (i) ri Test 1 Test 2 Test 3 
1 2 5 4  
2 3 3 2 1 
3 1 1   

 
Table 2. Job information. 

 
Job (j) Product 

typej 
aj sj dj 

1 1 0 1 5 
2 2 0 0 ∞ 
3 1 0 1 5 
4 3 0 1 1 
5 1 3 0 ∞ 
6 2 3 1 6 

 
 

Table 3. Test tasks to be scheduled. 
Test 

Task (q) 
Related 

Job 
Product 

Type 
Test 
Type 

1 1 1 1 
2 1 1 2 
3 2 2 1 
4 2 2 2 
5 2 2 3 
6 3 1 1 
7 3 1 2 
8 4 3 1 
9 5 1 1 
10 5 1 2 
11 6 2 1 
12 6 2 2 
13 6 2 3 

 
 

 

Table 4. Technician capability set. 
 

Technician (h) Yh,1 Yh,2 Yh,3 
1  Test 1, 2, 3  
2  Test 1 Test 1 
3 Test 1, 2 Test 1, 3 Test 1 
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Table 5. Experimental variables and 0-idle time duration 

n m 0-idle time Duration 
50 5 24 days 
 10 12 days 

100 5 48 days 
 10 24 days 

 

 

Table 6. Experiment results for the flowtime criteria. 

 
n pdd m w flex AT BC AR UTW BCW ARW 
50 bal 5 5 low 18.2 (14) 19.3 (6) 26.8 (0) 29 (0) 20.5 (3) 21.7 (1) 
    high 12.3 (10) 12.6 (6) 21.6 (0) 19.3 (0) 12.8 (8) 13.4 (1) 
   10 low 14.9 (9) 15 (12) 21.8 (0) 21.1 (0) 16.5 (2) 16.5 (2) 
    high 12.8 (9) 12.6 (13) 23.1 (0) 19.3 (0) 14.6 (1) 14.4 (2) 
  10 5 low 10.5 (13) 11.9 (2) 13.5 (0) 14.2 (0) 10.5 (8) 12.1 (1) 
    high 7.4 (15) 8.4 (2) 11.3 (0) 10.6 (0) 7.7 (7) 9.1 (0) 
   10 low 9.1 (17) 9.6 (4) 11.9 (0) 11.7 (1) 9.7 (2) 10 (1) 
    high 7.4 (11) 7.5 (12) 12 (0) 10 (1) 8.2 (0) 8.2 (2) 
 unb 5 5 low 15.7 (15) 17.7 (1) 22.6 (0) 23 (0) 17.1 (8) 19.3 (0) 
    high 10.5 (14) 11.5 (3) 17.8 (0) 15.9 (0) 10.8 (8) 12 (0) 
   10 low 14.4 (13) 14.6 (10) 21.3 (0) 20.3 (0) 16.1 (0) 16.3 (1) 
    high 11.8 (12) 11.8 (10) 20.7 (0) 16.9 (0) 12.9 (1) 12.9 (1) 
  10 5 low 9.3 (18) 11.7 (0) 11.7 (1) 12.1 (0) 9.8 (4) 12.3 (0) 
    high 6.4 (15) 8.2 (1) 10 (1) 9 (0) 6.7 (8) 8.4 (0) 
   10 low 8.8 (14) 10 (1) 11.5 (0) 11.3 (1) 9.3 (8) 10.2 (0) 
    high 7.8 (15) 8.2 (6) 12.7 (0) 10.8 (0) 8.5 (4) 8.8 (0) 

100 bal 5 5 low 21.4 (14) 22.4 (4) 31.3 (0) 33 (0) 22.1 (6) 24 (1) 
    high 17.2 (12) 17.2 (5) 32.8 (0) 28.8 (0) 17.5 (8) 18.3 (0) 
   10 low 18.6 (8) 18.1 (11) 27.4 (0) 26.8 (0) 19.6 (2) 19.6 (4) 
    high 15.9 (7) 15.3 (17) 28.7 (0) 25.5 (0) 17.2 (0) 16.9 (1) 
  10 5 low 13.3 (15) 16.3 (0) 18.1 (0) 18.3 (0) 13.7 (7) 17.1 (0) 
    high 8.2 (15) 9.7 (0) 14.2 (0) 12.8 (0) 8.6 (10) 10.4 (0) 
   10 low 12 (13) 12.4 (6) 17.1 (0) 16.8 (0) 12.5 (6) 13.1 (0) 
    high 9.8 (4) 9.3 (18) 15.9 (0) 14.4 (0) 10.3 (0) 10.1 (3) 
 unb 5 5 low 22.2 (15) 24.4 (1) 31.2 (0) 31.4 (1) 22.3 (7) 24.7 (0) 
    high 18.3 (13) 19.3 (3) 34.1 (0) 29.3 (0) 18.6 (8) 20.1 (0) 
   10 low 20.4 (8) 20.6 (12) 30.4 (0) 30.5 (0) 22.2 (2) 22.3 (1) 
    high 16.5 (11) 16.5 (12) 33 (0) 27.4 (0) 18.5 (0) 18.3 (2) 
  10 5 low 13.9 (15) 18.3 (0) 17.7 (3) 17.4 (1) 14.3 (8) 18.9 (0) 
    high 8.7 (14) 11.6 (0) 14.9 (0) 12.7 (0) 9.1 (11) 12.2 (0) 
   10 low 11.3 (18) 12.5 (2) 15.8 (0) 16.1 (0) 11.8 (4) 13 (0) 
    high 9.5 (14) 9.8 (7) 16.3 (0) 14.4 (0) 10.2 (3) 10.6 (1) 
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Table 7. Summary of the Flowtime results by experimental variables 
  Average Error  %  Best Solutions Found 

Variable Level AT BC BCW  AT BC BCW 
n 50 2.5% 12.9% 10.3%  53.5% 22.3% 18.0% 
 100 3.8% 15.7% 9.0%  49.0% 24.5% 20.5% 

pdd bal 3.6% 10.0% 9.9%  46.5% 29.5% 17.5% 
 unb 2.7% 18.5% 9.4%  56.0% 17.3% 21.0% 

m 5 3.8% 8.1% 11.5%  46.0% 31.5% 16.0% 
 10 2.5% 20.4% 7.7%  56.5% 15.3% 22.5% 

w 5 3.2% 22.9% 7.1%  56.8% 8.5% 29.8% 
 10 3.2% 5.6% 12.2%  45.8% 38.3% 8.8% 

flex low 3.0% 16.1% 9.0%  54.8% 18.0% 19.3% 
 high 3.3% 12.5% 10.3%  47.8% 28.8% 19.3% 
 Average 3.2% 14.3% 9.6%  51.3% 23.4% 19.3% 

 
 

Table 8. Two-way interaction result for m and w. 
  Average Error  %  Best Solutions Found 

m w AT BC BCW  AT BC BCW 
5 5 3.9% 12.9% 8.2%  53.5% 14.5% 28.0% 
 10 3.7% 3.3% 14.9%  38.5% 48.5% 4.0% 

10 5 2.4% 32.9% 6.0%  60.0% 2.5% 31.5% 
 10 2.6% 8.0% 9.5%  53.0% 28.0% 13.5% 
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Figure  1. Feasible and unfeasible assignments 
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Alex, sugiero cambies en la figura “un-feasible” por unfeasible (sin guion)
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Figure 2. Two sample schedules. 
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Figure 3. Prototype tool snapshot : Start and Product_Information sheets. 
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Figure 4. Prototype tool snapshot : Technician_Information and Lot_Information sheets. 
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Figure 5. Prototype tool snapshot : Schedules sheet. 
 

 


