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Abstract 
Two important managerial objectives in production planning are the maximization of the on time delivery 
of orders and the satisfaction of the workers. While the maximization of  on time deliveries has been 
considered frequently in past production planning research, maximizing worker satisfaction has been 
typically ignored. The assignment of preferred tasks  to workers  is important  since it  results in a 
productive working environment with  high worker performance and low turnovers.  This paper presents a 
job scheduling model that considers both criteria simultaneously and  derives solution approaches to 
generate non-dominated solutions. The solution approaches are examined under various experimental 
conditions to evaluate their performance. Finally a prototype tool developed as a proof of concept is 
presented. 
 
Keywords: Parallel machines, late jobs, worker satisfaction, worker preference, completion times, on 
time orders, makespan, heuristics, non-dominated solutions, bi-criteria, evaluation methods. 
 



SCHEDULING TO MAXIMIZE WORKER SATISFACTION AND ON 
TIME ORDERS 

 
1. INTRODUCTION 
The literature on scheduling problems is vast and diverse given the importance of effectively utilizing the 
limited resources available in manufacturing and service organizations. While the literature has often 
focused on problems that can be linked to “machine” type resources, the general framework used implies 
that many problems can also apply to the scheduling of people. For example, the health care sector has 
adopted techniques applied to manufacturing  (including scheduling) to create real value by reducing 
waste and improving productivity, cost, quality, and the timely delivery of patient care services (Johnson 
et al., 2012). While worker (staff) scheduling variables can be very similar to those used to characterize 
machines, one that may not easily correlate is that of worker’s preference/ satisfaction for the work they 
perform. Preference/ satisfaction is not equivalent to  the ability or speed of performing a task, although 
they could be related.  In general, workers like to perform tasks they are good/fast at and similarly, dislike 
tasks they are slow/ inefficient at. However, there are workers that prefer tasks with a high level of 
complexity or “nature”, even when they may not perform them “fast/ efficiently”, and similarly have low 
preference for another set of tasks they can perform quickly, but find them boring or repetitive. 

This paper addresses a problem observed at a manufacturing facility that produces make to order 
windows and cabinetry. The problem is to find the best assignment of jobs to workers that meets 
customer order due dates while taking into consideration the preference of the workers (the level of 
satisfaction of the work assigned to them). The assignment of the preferred tasks to the workers will result 
in workers with higher morale, higher dedication to their work, and will reduce company turnover levels. 
In the setting under consideration there are multiple pending orders and each order is characterized by a 
due date, order type, a processing time, and a scheduling time window. Each  worker has a preference 
level for  each  job type  and the satisfaction level associated with performing a task   impact the 
processing time  of the job. Following the traditional scheduling framework, this problem is considered as 
an identical parallel machine scheduling problem. Two managerial objectives are considered: the 
maximization of the on time jobs and the maximization of worker satisfaction.  

A large number of papers have been published that aim to minimize the number of late jobs, 
although the number focused on parallel machine settings is relatively small. Ho and Chang (1995) were 
the first to address the problem of minimizing the number of late jobs in parallel machines. The authors 
present and discuss the performance of several heuristics derived from the optimal single machine 
algorithm from Moore (1968). Lin and Jeng (2004) addressed the case of batch scheduling in parallel 
machines with two objectives: the minimization of the maximum lateness and the number of tardy jobs. 
They propose a dynamic programming approach and some heuristics to solve the problem. M’Hallah and 
Bulfin (2005) developed a branch and bound algorithm to minimize the weighted and un-weighted 
number of tardy jobs for the identical and unrelated parallel machine cases. A polynomial algorithm for 
the identical parallel machine case with identical processing times and number of tardy jobs objective is 
presented by Bornstein et al. (2005). In their research, the problem is formulated as a maximum flow 
network model. The dual resource problem of scheduling jobs on a set of parallel machines with the 
objective of minimizing the number of late jobs is investigated by Ruiz-Torres et al. (2007). In the 
addressed problem the speed of the machines depends on the allocation of a secondary resource that is 
allocated to the machines at the start of the schedule.  The paper proposes a set of heuristics for the 



general case and an integer programming formulation to solve the case where the jobs are pre-assigned to 
the machines. 

When workers submit their schedule preferences and the organizational work plan does not have 
any conflict, a win-win schedule can be generated without costing the organization (Alsheddy and Tsang, 
2011). This ideal scenario is hard to find in practice; therefore different approaches have been suggested 
in order to maximize workers satisfaction. An integer programming model to maximize part-time 
employee satisfaction and meet the demand requirements per shift is presented by Mohan (2008). The 
part-time workers have availabilities, preferences for the shifts, and also a seniority level. Alsheddy and 
Tsang (2011) developed an empowerment scheduling model which enables employees to express their 
own schedule. The main idea of empowerment is to make the employees feel the fairness of the system by 
incorporating an automatic market-like mechanism that controls the violation cost of each worker’s 
request. Shahnazari-Shahrezaei et al. (2012) argue that preferences may not be determined precisely and 
causes the worker scheduling problem to be of fuzzy nature. They present a fuzzy multi-objective 
mathematical model to solve a multi-skilled manpower scheduling problem considering imprecise target 
values of employers’ objectives and employees’ preferences. Akbari et al. (2012) present a linear 
programming model aimed to maximize workers’ satisfaction while regarding workers’ availability, 
productivity, priority preference, seniority level, and number of workers required. They use simulated 
annealing and variable neighborhood search for tackling this difficult combinatorial problem.   

Another relevant problem variation is the consideration of resource cost as this can relate to 
worker preference. Research in parallel machines considering a cost function has been investigated by a 
few authors. Leyvand et al. (2010) present a convex resource consumption function and study scheduling 
problems with controllable processing times on parallel machines. The objectives are to maximize the 
weighted number of jobs that are completed exactly at their due date and to minimize the total resource 
allocation cost. Ruiz-Torres et al. (2010) study the case in which a concave cost function together with 
any regular performance measure are criteria for determining how many machines to use and how to 
optimally load them. 

This research work contributes to the scheduling literature by analyzing a problem with a new 
measure of performance of importance in environments where people are the critical resource and where 
their satisfaction with their work assignment highly relevant. The research is also relevant as it addresses 
the maximization of two objective functions in a non-dominated format, while also considering time 
window constraints, an atypical formulation but of practical application (in the parallel machine literature 
minimizing the time window or makespan is typically an objective function, not a constraint). 

The remaining of the paper is organized as follows. Section 2 provides the problem formulation 
and an example. Section 3 describes the solution approaches while section 4 presents the evaluation 
methodology. The experimental framework and the results are discussed in section 5, while a prototype 
application is presented in Section 6. A summary and directions for future work are included in Section 7. 
 
2. PROBLEM FORMULATION AND EXAMPLE 
The problem under consideration is described as follows. There are n jobs to be completed, N = {1, …, n} 
and  w workers available W = (1…w), with w > 1. Jobs are non-divisible and preemption is not allowed. 
Workers can only process one job at a time and cannot stand idle until the last job assigned to him/her has 
been finished. Each job j has a due date dj and a process time of pj. We assume pj ≥ 1, dj ≥ pj, and 
processing times and due dates are integer values. Let P be the sum of all the jobs process times, P = ∑j∈N 
pj.  



The satisfaction received by worker k when assigned job j is sj,k. The problem considers two 
objectives simultaneously: one related to customer satisfaction (the maximization of on time orders) and 
one related to overall worker level of satisfaction. The first objective is a traditional objective of the 
scheduling literature as it is obviously equivalent to the minimization of the number of late jobs.  Let cj be 
the completion time of job j and uj be a binary variable equal to 1 if cj > dj, and 0 otherwise. Let the 
percentage of on time jobs Ot equal (n – ∑j∈N uj )/n.  

To the best of our knowledge  there are no job based worker satisfaction criteria for multi-job 
multi-machine environments, although a related criteria is  the minimization of total job costs (as an 
inverse to satisfaction). The models found in the literature relate worker satisfaction to meeting the 
preference of workers to be assigned to particular desired work shifts, and not to performing particular  
types/ sets of jobs. We thus propose that a job assignment based satisfaction criteria should consider 
several factors including the total level of satisfaction of the staff  (which is similar to the total cost), and 
the relative or minimum satisfaction among workers (no similar element when we consider costs, there is 
no point in having balanced costs across resources). 
 It is important to note that focusing solely on the sum of worker satisfaction scores (equivalent to 
minimizing the cost of the resource to job assignments) could lead to highly unbalanced satisfaction 
levels between the workers. For example, if all jobs are of type q, and worker k has a high preference for 
type q jobs, and all other workers strongly dislike type q jobs, assigning all  jobs to worker k would 
maximize the total satisfaction score. However worker k would in reality be highly unsatisfied given it 
was tasked to perform all the work. Thus as mentioned earlier, worker satisfaction for the complete set of 
workers would be associated with a balanced allocation of satisfaction. In our model which is  based on 
the manufacturing setting described in section 1, the objective is to finds a schedule  where none of the 
workers ends up below a satisfaction  threshold level. It is proposed that from an overall worker 
satisfaction point of view, having assignments where all the worker satisfaction scores meet a minimum 
threshold level is better than some very satisfied workers and a few very unsatisfied workers (below a 
threshold), even when the later total satisfaction score (for the group) is higher than the first. For example, 
assume a satisfaction scale 1-7; 7 being very satisfied, 1 being very unsatisfied, and 4 is the threshold 
level (workers are “ok” with the assignment). There are four workers. Assume a schedule σ1 where their 
job assignments result in satisfaction scores of 7, 7, 3,and 3; two very happy workers and two unhappy 
workers, and a total score of 20 (average of 5). Assume a schedule σ2 with satisfaction scores of 4 for all 
the workers; all workers are “ok” with their assignments, and a total score of 16 (average of 4). Our 
model assumes that schedule σ2 is preferred by management (and the workers). Having limits on the 
satisfaction scores is an obvious difference from the resource cost type objective function (a resource cost 
objective would select σ1). 
 Let zk be the satisfaction score associated with the jobs assigned to worker k. Let Nk be the set of 
jobs assigned to worker k, then zk = ∑ j∈Nk sj,k / ∑ j∈Nk pj.  As previously described, our model includes a 
constraint that limits the satisfaction score per worker (threshold level) for any of the workers. Let Zmin be 
the minimum allowed worker satisfaction score, thus zk ≥ Zmin for all the workers. It is noted that the 
number of feasible solutions will shrink as Zmin increases, and no solutions may be found after Zmin 
reaches some instance specific level. The total average worker satisfaction is defined as Zave = ∑ k∈W zk / w 
and is our second measure of performance. Clearly Zave will always be greater than or equal Zmin for a 
feasible schedule. 

Another important element of the model is the consideration of a specified deadline Cbound for the 
jobs, i.e. each job must finish not later than time Cbound. This model does not minimize the makespan Cmax 



= max j∈N cj but considers the constraint that all jobs are completed before the deadline Cbound.  The 
assumption is that this time window accounts for the available worker time, and that time not assigned to 
processing the jobs in N will be assigned to other tasks as training, equipment maintenance, and last 
minute/ “emergency” activities. As in the case of Zmin, having a very tight Cbound constant may result in no 
feasible schedules being found. 
 Let G be the set of all possible positions in a worker’s schedule, and assuming all workers get at 
least one job there are at most n – w  + 1 positions in a worker’s schedule. The mathematical formulation 
for this problem is presented next. The decision variable xjki, j∈N, k∈W, i∈G, is a binary variable that is 
equal to 1 if job j is assigned to worker k in position i, 0 otherwise. The decision variable uki, k∈W, i∈G, 
is a binary variable that is equal to 1 if the job assigned to worker k in position i is late, 0 otherwise. Let B 
be a big number.  
 
2.1 Formulation 
 

Maximize Ot = (n – ∑ i∈G, k∈W uki)/n       (1) 
Maximize Zave = ∑ k∈W  zk / w        (2) 

 
∑j∈N xjki ≤ 1       ∀ i∈G, k∈W   (3) 
∑i∈G, k∈W  xjki = 1      ∀ j∈N    (4) 
xjki  ≤ ∑l∈N  xlk(i-1)      ∀ j∈N, k∈W i∈G\{1}  (5)  
mki = ∑j∈N, l = 1..i  pj× xjkl – ∑j∈N dj × xjki    ∀ k ∈ W, i∈G   (6) 
mk,i  ≤ uki × B + B (1-∑j∈N xjki)    ∀ k ∈ W, i ∈G   (7) 
Ck = ∑j∈N, i∈G  pj× xjki      ∀ k ∈ W   (8) 
Cbound  ≥   Ck       ∀ k ∈ W   (9) 
zk =  ∑ i∈G, j∈N   sj,k × xjki  / Ck     ∀ k ∈ W   (10) 
zk ≥ Zmin       ∀ k ∈ W   (11) 
xjki ∈ {0, 1}      ∀ j∈N, k∈W, i∈G  (12) 
uki∈ {0, 1}      ∀ k∈W, i∈G   (13) 

 
The first two equations are the independent objective functions considered. Equation (3) states 

that to each position in each worker at most one job can be assigned. Equation (4) states that each job 
must be assigned just once to one position in one worker. Equation (5) guarantees continuous assignments  
In Equation (6), mki  represents  the tardiness of the job assigned to  position i  of the worker if ∑j∈N xjki=1 
(i.e. a job is assigned to worker  k  at  position i). In this case, a value of mki  less than or equal to 0 
indicates an on-time job, while a positive value indicates the job in that position/worker is late.  Whereas 
if  no job is assigned to that position of worker k (i.e. ∑j∈N xjki = 0), mih represents the workload of  worker 
k. Equation (7) is used to set the binary variable uki to 1 if the job assigned to worker k in position i  is 
late, 0 for on time job (or unused positions).  Equation (8) establishes the workload for each worker and 
equation (9) limits the workload in each worker (Ck) by the maximum allowed (time windows bound). 
Equation (10) is used to set the satisfaction score for each worker and equation (11) constraints the 
satisfaction scores per worker by the minimum level. Equations (12-13) set up the binary variables. The 
problem has approximately n2(w+1) binary variables, making it “computationally” challenging as n and w 



increase. The problem of minimizing the number of late jobs has been shown to be NP-Hard (Ho and 
Chang 1995), thus any multi-criteria problem that considers this criteria is also NP-Hard. 
 
2.2 Problem Example 
To demonstrate the problem challenges and tradeoffs between the criteria, a simple  example is presented 
based on the observed industrial/service case of a custom-made cabinetry and furniture operation.  For 
this case, the  level of satisfaction perceived by the worker  is based on the job  type.  It is assumed   that 
there are  b job types and each worker k has a preference rating rk,h for job type h. A linear rating scale is 
proposed with a maximum value reflecting a highly desirable job type, and the lowest value a highly 
undesirable job type. Let rmax be the highest rating a job type can have, and rmin be the lowest rating any 
job type can have, and rmin ≥ 0, rmax ≥ 0, and rmax > rmin. The satisfaction associated with assigning job j of 
type h to worker k, sj,k, is a function of pj and rk,h and modeled as sj,k = rk,h × pj which  indicates a linear 
relationship between the satisfaction the worker gets from jobs and their processing duration. There are 
multiple ways for defining  sj,k . The approach used in this work  is based on the observed manufacturing 
setting.. 

 
Table 1 presents the worker preference information while Table 2 presents the job information. 

Let rmax = 7 and rmin = 1; a rk,h value of 7 indicates a very strong preference  for that type of job, a score of 
1 indicates a strong dislike for this type of job and a score of 4 indicates “indifference” or an “acceptable” 
type of job. We assume an initial value of Zmin equal to 3 and Cbound equal to 42 (approximately a 10% of 
slack from P/w). 

 
Table 1. Worker preference information 

 Preference ratio (rk,h) 
worker (k) h = 1 h = 2 h = 3 

1 5 1 5 
2 4 7 2 

 
Table 2. Job information 

Job (j) h pj dj sj1 sj2 
1 2 5 8 5 35 
2 2 7 15 7 49 
3 1 12 35 60 48 
4 2 6 14 6 42 
5 3 9 23 45 18 
6 3 15 27 75 30 
7 2 8 14 8 56 
8 2 13 17 13 91 

 
Four possible schedules are presented in Figure 1. The four schedules are not intended to be the 

most “reasonable” / efficient schedules. Schedule σ1 is optimal for the percentage of on time jobs (no 
schedule can be generated with 100% on time jobs), but has a relatively low average satisfaction score 
Zave when compared to schedules σ1, σ2, and σ3. Furthermore, while it complies with the Zmin 
requirement, the satisfaction of worker 1 is below the “mid-point” (the desired level as discussed in the 



next paragraph). Schedule σ2 has the highest possible value of Zave (e.g. 6.0), a value that is obtained by 
assigning jobs to the worker that has the highest preference for that type. While schedule σ2 is optimal for 
Zave, it is not a good schedule from a management standpoint given that it only completes 50% of the jobs 
on time. Schedule σ3  provides a balanced solution considering the on-time jobs and level of satisfaction 
performance measures, although worker 1 is still below the median of 4. This schedule is also makespan 
optimal.  

If Zmin is increased to 4 (the threshold level desired by management) only schedule σ2 will meet 
the requirement. However if  Cbound is decreased to 48 (30% of slack from P/w) schedule σ4  will become 
a solution (besides σ2) meeting  Zmin with a relatively good customer service level (75% on time jobs). 
Clearly the tradeoff is a larger scheduling time window. Thus, based on this example and the four 
schedules presented, there are tradeoffs between the objective functions, and multiple solutions can be 
selected for implementation, all limited by minimum satisfaction levels for the workers and the size of the 
time window. 
 

Figure 1. Four possible schedules 

 
 
3. SOLUTION APPROACHES 
 
The solution approaches proposed in this section are worker to job and job to worker assignment 
heuristics that combine various worker selection strategies with job selection strategies. Given that the 
number of late jobs in a single machine (worker) is optimally solved by Moore’s algorithm (1968), the 
problem’s key decision process is which jobs are assigned to which worker and not the sequence of jobs 
per worker. However, it is obvious that the assignment of jobs to workers will have an effect on the total 
number of jobs that are completed on time by each worker and in their satisfaction scores. We first 
present two heuristics to generate the baseline schedules followed by two improvement algorithms, the 
goal of the later to generate schedules that meet the Cbound and Zmin constraints.  
 The proposed solution approaches are iterative in nature and multiple schedules are generated in 
the process. We consider the analysis of the heuristics based on the non-dominated solution set each 
heuristic version generates.  Considering two schedules, the set is non-dominated if Zave(σ1) ≥ Zave(σ2) 
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and  Ot(σ1) ≤ Ot(σ2) with at least one inequality being true, or Zave(σ1) ≤ Zave(σ2) and  Ot(σ1) ≥ Ot(σ2) 
with at least one inequality being true. The evaluation approach for the non-dominated solution sets is 
discussed in the next section. 
 
3.1 Notation  
Ck   Current processing time load in worker k, i.e. Ck = max j∈Nk  cj. 
nk  Number of jobs assigned to worker k. 
Nk  Set of jobs assigned to worker k. 
N’  Set of all unassigned jobs. 
W’  Set of available workers. 
L  Set of temporarily un-assignable jobs. 
Q  Set of schedules (solutions). 
Bound  Current makespan bound. 
 
3.2Heuristic BinIterative 
Heuristic BinIterative first selects the worker to be scheduled, then the job to be assigned. The process 
does not guarantee that a feasible solution will be found (i.e. a solution that meets the Zmin and Cbound 

constraints), an issue addressed later by the improvement algorithms (and also in the evaluation 
methodology and prototype sections of the paper). There will be four variants of the BinIterative 
heuristic based on the rules used to select the workers and jobs. The process iterates the target 
completion time as to create multiple Pareto Efficient schedules. We note that unless mentioned, ties 
are solved arbitrarily. 
 
Step 0. Let Q = ∅ and Bound = Cbound. 
Step 1. Let N’ = N, L = ∅,  and W’ = W. 
Step 2. Select worker k from W’ by worker rule (rule 1: k = arg max k∈W’{∑v∈N’  sv,k}; rule 2: k = 

arg min k∈W’{∑v∈N’  sv,k}). Remove worker k from W’. 
Step 3.  Select job j from N’ by job rule (rule 1: j = arg max j∈N’ {sj,k /pv:  pj ≤ Bound – Ck} solving 

ties by smallest {dj}; rule 2:  j = arg min j∈N’ {dj: pj ≤ Bound – Ck}, solving ties by largest 
{sj,k /pj }). If no job is found then go to Step 7.  

Step 4.  Remove job j from N’ and assign job j to worker k: N’ = N’ –{j} and Nk = Nk ∪ {j}. Order 
the jobs in Nk by non-decreasing due date, this is temporary sequence with f  late jobs. 

Step 5. If f > 0 then generate nk sequences by temporary removing one at a time each of the jobs 
assigned to worker k (each temporary sequence would have nk – 1 jobs). Select the 
sequence that has no late jobs, breaking ties by maximum zk. Let l be the job from Nk not 
included in the selected sequence. Let Nk = Nk – {l} and L = L ∪ {l}. 

Step 6. If N’ ≠ ∅ then go to Step 3. 
Step 7. Let N’ = N’ ∪  L and L = ∅. If W’ ≠ ∅  and N’ ≠ ∅ go to Step 2. 
Step 8. If N’ ≠ ∅ then let W* be the set of all workers h from W’ with  zh < Zmin. Select j from N’ 

by j = arg min j∈N’ {dj}.Generate a set of temporary sequences by assigning job j to each 
worker h from W*, ordering each temporary sequence by Moore’s algorithm.  Select the 
worker k with temporary sequence with smallest increase in late jobs, solve ties by smallest 
{Ch}, then by largest {zh}.  



Step 9 Remove j from N’ and assign to worker k. Sort jobs in Nk by Moore’s algorithm. 
Step 10. If N’ ≠ ∅ then go to Step 8. 
Step 11. Add the generated schedule to set Q. Remove all dominated schedules from Q. 
Step 12. If Bound > P / w then let Bound = Bound – 1 and go to Step 1. Else End. 
 

The BinIterative heuristic is further explained next. Step 0 initializes the target processing load 
bound for all workers (Bound) and the set of solutions (Q) to an empty set. Step 1 defines the set of 
unassigned jobs (N’), the set of  un-assignable jobs (L), and the set of available workers (W’). In Step 2 
the worker to load (i.e. k) is selected based on one of two rules: rule 1 selects the worker with the 
highest overall satisfaction for the unscheduled jobs, and rule 2 selects the worker with the least total 
satisfaction for the unscheduled jobs. Step 3 selects the job to be assigned to the worker to load based 
on two rules: rule 1selects the job with maximum contribution to the worker’s satisfaction and rule 2 
selects the job with earliest due date. In all cases, adding this job must not violate the Bound limitation. 
If a job is found, then in Step 4, the job is added to the worker to load and the sequence is ordered by 
the job’s due date. Step 5 generates multiple sequences for the worker to load when adding the 
selected job results in at least one late job. Each temporary sequence is based on removing one of the 
jobs assigned to the worker to load. The sequence with no late jobs and maximum satisfaction is 
selected and the removed job placed on the un-assignable set of jobs (L). Step 6 serves as a loop 
control, where if there are still unassigned jobs the process returns to Step 3 (to select the next job to 
be assigned). Step 7 is reached when the temporary set of unassigned jobs (N’) is empty (jobs have 
been assigned to workers or to set L) or if no job was found to meet the constraints in Step 3. In Step 7, 
the set of unassigned jobs is redefined to include the jobs that were un-assignable (L) in this loop, and 
if this set is not empty and there are workers that have not been assigned jobs, the process returns to 
Step 2 (select next worker to be assigned jobs). Step 8 is reached when all workers have received an 
initial assignment of jobs, but there are still some unassigned jobs. In this step the set of workers that 
do not meet the Zmin constraint is created and a job and worker selected by four cases that prioritize 
workers that do not meet the Zmin constraint and job assignments that do not violate the CBound 
restriction. However, in Step  9 assignments can be made that violate the Cbound constraint. Step 8 is 
repeated until all unassigned jobs have been assigned to one of the workers (Step 10 serves as loop 
control). Step 11 adds the generated schedule to the set of solutions and dominated solutions are 
eliminated. Step 12 redefines the target bound and restarts the process, limited by a perfect balance 
across the workers. 
 
3.3 Heuristic JobIterative 
This heuristic first selects the job to be scheduled and considers all available workers simultaneously for 
its assignment. As in the case of BinIterative, the process does not guarantee a solution that meets the Zmin 
and Cbound constraints. Four versions of this heuristic are also implemented. 
 
Step 0. Let Q = ∅ and Bound = Cbound. 
Step 1. Let N’ = N. 
Step 2. Select job j from N’ by job rule (job rule 1:  j = arg max j∈N’ h∈W’ {sj,h /pj}, solving ties by 

smallest {dj}; job rule 2:  j = arg min j∈N’ h∈W’{dj}, solving ties by largest {sj,h /pj}).  
Step 3.  Generate w’ temporary sequences by assigning job j to each worker k from W’, ordering 

each temporary sequence by Moore’s algorithm.  



 
worker selection rule 1: Select the worker k with the sequence that has the smallest increase 
in late jobs with a workload that satisfies the bound, k = arg min k∈W’ {u’k – uk: Ck ≤ 
Bound}, solve ties by largest {zk}, then by largest {Ck}. If k is not found, select the worker 
k with the sequence that has the smallest increase in late jobs, k = arg  min k∈W’ {u’k – uk}, 
solve ties by smallest {Ck}, then by largest {zk}. 
 
worker selection rule 2:  Select the worker k with temporary sequence with largest 
satisfaction and satisfies the bound, k = arg max k∈W’ {zk : Ck ≤ Bound}, solve ties by 
smallest {u’k – uk}, then by largest Ck. If k is not found, select the worker k with the 
sequence that has the maximum satisfaction, k = arg  max k∈W’ {zk}, solve ties by smallest 
Ck then by smallest {u’k – uk}. 

 
Step 4. Remove j from N’ and assign to worker k. Sort jobs in Nk by Moore’s algorithm. 
Step 5. If N’ ≠ ∅ then go to Step 2. 
Step 6. Add the generated schedule to set Q. Remove all dominated schedules from Q. 
Step 7. If Bound > P / w then let Bound = Bound – 1 and go to Step 1. Else End. 
 

The JobIterative  heuristic is further clarified next. Step 0 initializes the target processing load 
bound for all workers (Bound) and the set of solutions (Q). Step 1 defines the set of unassigned jobs 
(N’) and the set of available workers (W’). Step 2 selects the job to be assigned based on two rules: 
rule 1 selects the job with maximum contribution to the worker’s satisfaction (any of the available 
workers) and rule 2 selects the job with earliest due date. Step 3 determines the worker that will be 
assigned the current job based on one of two rules: rule 1 the assignment that maximizes on time jobs 
and rule 2, the assignment that maximizes worker satisfaction. Step 4 assigns the job to the selected 
worker and Step 5 updates the set of available workers serves as a loop control, where if there are still 
unassigned jobs the process returns to Step 2 (to select the next job to be assigned). Steps 6 and 7 are 
similar to Steps 11 and 12 of BinIterative. 
 
 
4.4 Improvement Heuristics 
Both of the just described heuristics aim at meeting problem constraints and maximizing the objective 
functions, however the steps in these heuristics do not guarantee that the zmin and Cbound constraints will be 
met. Instead the processes guarantee that a schedule where all the jobs in N are scheduled in W is built. 
This subsection presents two algorithms based on neighborhood search that are used to “move” each of 
the solutions in a set Q to meet the mentioned constraints. 
 
Heuristic Meet_Cbound 
Input: Schedule with all jobs from N assigned to the workers in W. 
Step 1. Let X be an empty set of schedules.  
Step 2. Select k from W; k = arg max k ∈W {Ck}. If Ck ≤ Cbound then End. 
Step 3. Let Φ = Ck and W* = W – {k}. 
Step 4. Generate temporary schedules by 



Step 4.1 Single job removals from k: Removing each job j from worker k and assigning j to 
each worker h in W*, considering only cases where Ch + pj ≤ Cbound; ordering all the 
jobs in workers h and k by Moore’s algorithm. A maximum of │Nk │× (w – 1) 
temporary schedules are generated in this step; add all temporary schedules to set X. 

Step 4.2 Pairwise exchanges: Exchanging each job j assigned to worker k with each job i 
assigned to worker h, for all workers h from W*, considering only the exchanges 
where Ch + pj – pi  ≤ Cbound, ordering all the jobs in workers h and k by Moore’s 
algorithm. A maximum of │Nk │×│N - Nk │temporary schedule are generated in this 
step; add all temporary schedules to set X. 

Step 5. Select the schedule in set X with the largest Ck , Ck ≤ Cbound, solving ties by smallest  Ot, then 
by Zave. If a schedule is found then this is the current schedule and go to Step 1. 

Step 6.  Select the schedule in set X with the smallest Ck, solving ties by smallest Ot, then by Zave. If Ck 
< Φ then this is the current schedule and go to Step 1.  

Step 7. End. 
 

The Meet_Cbound heuristic is further clarified next. Step 1 defines a set of empty schedules (X). 
Step 2 determines if there is a worker with a workload that exceeds the Cbound constraint, and if this is 
not the case the heuristic ends, otherwise this worker becomes the worker to improve (i.e. k). Step 3 
defines a variable to track the current makespan and a set of workers that meet the Cbound constraint. 
Step 4 generates schedules with all the pairwise interchanges between the worker to improve and all 
other workers. Step 5 selects from the schedules generated in Step 4 the schedule that results in an 
exchange where both “participating” workers have loads that meet the Cbound  constraint. If such a 
schedule is found the process goes back to Step 1, else Step 6 selects from the schedules generated in 
Step 4 the schedule where the interchange results in a reduction in the load of the worker to improve 
(worker k) and where the load in the other “participating” worker does not exceed Cbound.  If such a 
schedule is found the process goes back to Step 1. Step 7 is reached if no improvement was found and 
the current schedule cannot be enhanced further. 
 
Heuristic Meet_Zmin 
Input: Schedule with all jobs from N assigned to the workers in W and Cmax ≤ Cbound.  
Step 1. Select k from W; k = arg min k ∈W zk. If zk ≥ Zmin then End. 
Step 2. Let Φ = zk, W’ = W – {k}. 
Step 3. Let X be an empty set of schedules.  
Step 4. Generate temporary schedules by 

Step 4.1 Single job removals from k: Removing each job j from worker k and assigning j to 
each worker u in W’, considering only cases where sj,k / pj < Zmin, Cu + pj ≤ Cbound, (sj,u 
+ zu × Cu)/(Cu + pj) ≥ Zmin; then ordering all the jobs in workers u and k by Moore’s 
algorithm. A maximum of │Nk │× (w – 1) temporary schedules are generated in this 
step; add all temporary schedules to set X. 

Step 4.2 Single job insertions into k: Removing each job i assigned to worker u and assigning 
this job to worker k, for all workers u from W’, considering only cases where si,k / pi > 
Zmin and Ck + pi ≤ Cbound,  (zu × Cu – si,u  /(Cu –  pi) ≥ Zmin; then ordering all the jobs in 
workers u and k by Moore’s algorithm. A maximum of │N - Nk │ temporary 
schedules are generated in this step; add all temporary schedules to set X. 



Step 4.3 Pairwise exchanges: Exchanging each job j assigned to worker k with each job i 
assigned to worker u, for all workers u from W’, considering only the exchanges 
where si,k / pi > sj,k / pj, Cu + pj – pi  ≤ Cbound, vk – pj + pi ≤ Cbound,  (sj,u – si,u + zu × Cu)/(Cu 
+ pj – pi) ≥ Zmin; then ordering all the jobs in workers u and k by Moore’s algorithm. A 
maximum of │Nk │×│N - Nk │temporary schedule are generated in this step; add all 
temporary schedules to set X. 

Step 5. Select the schedule in set X with largest Ot and zk ≥ Zmin, solving ties by  largest Zave. If no 
schedule in X is found, select the schedule with largest zk (where zk > Φ); solving ties by 
largest Ot, then by Zave. If a schedule is found then this is the current schedule and go to Step 1.  

Step 6. End. 
 

The Meet_Zmin heuristic is further clarified next. Step 1 determines if there is a worker with a 
satisfaction below the Zmin constraint, and if this is not the case the heuristic ends, otherwise this 
worker becomes the worker to improve (i.e. k). Step 2 defines a variable to track the satisfaction score 
of the worker to improve and Step 3 defines a set of empty schedules (X). Step 4 generates all the 
schedules with single job insertions/removals and pairwise interchanges between the worker to 
improve and all other workers; but only schedules that will meet the Cbound constraint. Step 5 selects 
from the schedules generated in Step 4 the schedule that results in an insertion/removal/exchange 
where the satisfaction of the worker to improve meets the Zmin constraint, and if there are multiple 
schedules the one with maximum on time jobs. If no schedule generated in Step 4 results in a 
satisfaction score for the worker to improve that meets the Zmin constraint, the schedule with the largest 
satisfaction for that worker would be selected, given its an improvement over the initial value. If a  
schedule is found, the process goes back to Step 1. Step 6 is reached if no improvement was found and 
the current schedule cannot be enhanced further (thus not a feasible schedule). 
 
4.5 Overall solution process 
The overall solution process is as follows. 

1. Implement a main heuristic, BinIterative (BI) or JobIterative (JI), with a specific job and worker 
rule. This generates a non-dominated solution set (ie. Q). For example, implementing BinIterative 
with job rule (jr) 1 and worker rule (wr) 1 will result in the non-dominated solution set: QBI-jr1-wr1. 

2. For each solution in the set Q implement Meet_Cbound.  Eliminate all solutions in Q that do not 
meet the Cbound constraints and any dominated solutions. 

3. For each solution in each set Q implement Meet_Zmin. Eliminate all solutions in Q that do not 
meet the Zmin constraint and any dominated solutions. 
 
It is possible that a set Q is empty at the end of this process, thus the heuristic was unable to 

generate a feasible solution. The process is repeated eight times, resulting in a total of eight non-
dominated solution sets: QBI-jr1-wr1, QBI-jr2-wr1, …, QBI-jr2-wr2

, QJI-jr1-wr1,…, QJI-jr2-wr2.  
 
4. EVALUATION METHODOLOGY 
The evaluation of heuristics considering non-dominated solution sets in bi-criteria problems has been 
addressed using several methods (Ruiz-Torres and Barton, 2001, Carlyle et al., 2003, Ruiz-Torres and 
Lopez, 2004).  In this paper we use a modified version of the DEV method proposed in Ruiz-Torres and 



Barton (2001) which is based on the deviation from the solution set generated by a heuristic to each 
solution in the benchmark set.  

A basic element of the evaluation methodology is the comparison of the solution set generated by 
a heuristic versus the benchmark set of solutions for a problem instance. This benchmark set of solutions 
is populated by either the optimal solutions or the best found (which could include none, some, or all of 
the optimal solutions). In problems with a small search space where for example full enumeration could 
be used to generate all the solutions to a problem instance, the benchmark set would be composed of all 
the optimal non-dominated solutions for a problem instance. For problem instances where finding the 
optimal set of solutions is unfeasible (ie. extensive computational times) the benchmark set is populated 
by the combination of the solution sets from all heuristics. The later applies in this research and let the 
benchmark set β equal the non-dominated solutions from {QBI-jr1-wr1 ∪ … ∪ QBI-jr2-wr2

 ∪ QJI-jr1-wr1 ∪ … 
∪QJI-jr2-wr2}. It is assumed that β is populated by at least one feasible solution, otherwise the problem 
instance is defined as unsolved. 
 The DEV method in Ruiz-Torres and Barton (2001) evaluates each of the solutions in a heuristic 
set by measuring their deviation from the solutions in the benchmark set. The method assumes each 
solution in Q can be compared to each solution in β by worsening the solution in Q if it does not fall 
within the dominated region. Modifications to DEV were needed as it was assumed that Q was always 
populated by at least one solution, which as mentioned earlier, may not be true in this problem. In this 
version, and as in the FDH based method used in Ruiz-Torres and Lopez (2004), the efficiency of the 
solutions is measured instead of the deviation, where the maximum value is 1, and when no solution 
populates Q, the efficiency is 0. The efficiency of a solution α from β when compared to a solution  ω 
from Q is eα,ω and determined by (min [Ot(ω)/Ot(α), 1] +  min [Zave(ω)/Zave(α), 1])/2. The efficiency score 
for a solution α from β given set Q is based on the best performing solution from Q, thus max ω ∈Q eα,ω. 
The average efficiency EQβ of set Q when compared to set β is ∑ α ∈β  [ max ω ∈Q eα,ω] / │β│.  It is noted 
that both Zave and Ot have minimum levels above 0 and therefore avoids divisions by 0 (in our 
implementation zmin > 0 and Ot will always be ≥ w/n as at least there will be w on time jobs given dj ≥ pj 
for all jobs). 
 An example is used to illustrate the evaluation methodology. Assuming three heuristics with sets 
Qh1 = {(67%, 3.3), {50%, 5.2}, {30%, 6.2}}, Qh2 = {{90%, 4.1}, {30%, 5.2}}, and Qh3 = {{70%, 4.6}, 
{50%, 5.6}, {25%, 5.9}}. By combining the three sets and eliminating the dominated solutions the 
benchmark set is obtained, β = {{90%, 4.1}, {70%, 4.6}, {50%, 5.6}, {30%, 6.2}}. The efficiency 
calculations for sets Qh1 and Qh2 are presented in Tables 3 and 4 respectively. The average efficiency for 
the three heuristic sets are 0.9, 0.93 and 0.96 respectively, thus Qh3 is the best set of the three under the 
proposed evaluation method. 
 
  



 
β Qh1 min [Ot(ω)/Ot(α), 1] min [Zave(ω)/Zave(α), 1] eα,ω max ω ∈Q eα,ω 
 ω = {67%, 3.3} 0.74 0.80 0.77  

α = {90%, 4.1} ω = {50%, 5.2} 0.56 1.00 0.78 0.78 
 ω = {30%, 6.2} 0.33 1.00 0.67  
 ω = {67%, 3.3} 0.96 0.72 0.84  

α = {70%, 4.6} ω = {50%, 5.2} 0.71 1.00 0.86 0.86 
 ω = {30%, 6.2} 0.43 1.00 0.71  
 ω = {67%, 3.3} 1.00 0.59 0.79  

α = {50%, 5.6} ω = {50%, 5.2} 1.00 0.93 0.96 0.96 
 ω = {30%, 6.2} 0.60 1.00 0.80  
 ω = {67%, 3.3} 1.00 0.53 0.77  

α = {30%, 6.2} ω = {50%, 5.2} 1.00 0.84 0.92 1.00 
 ω = {30%, 6.2} 1.00 1.00 1.00  

 
Table 3. Efficiency calculations for set Qh1 

 
β Qh2 min [Ot(ω)/Ot(α), 1] min [Zave(ω)/Zave(α), 1] eα,ω max ω ∈Q eα,ω 

α = {90%, 4.1} ω = {90%, 4.1} 1.00 1.00 1.00 1.00 
 ω = {30%, 5.2} 0.33 1.00 0.67  

α = {70%, 4.6} ω = {90%, 4.1} 1.00 0.89 0.95 0.95 
 ω = {30%, 5.2} 0.43 1.00 0.71  

α = {50%, 5.6} ω = {90%, 4.1} 1.00 0.73 0.87 0.87 
 ω = {30%, 5.2} 0.60 0.93 0.76  

α = {30%, 6.2} ω = {90%, 4.1} 1.00 0.66 0.83 0.92 
 ω = {30%, 5.2} 1.00 0.84 0.92  

 
Table 4. Efficiency calculations for set Qh2 

 
 
5. COMPUTATIONAL EXPERIMENTS 
 
The computational experiments are based on previous research in parallel machines which consider as 
factors the number of jobs and workers (typically referred to as the number of machines) and due date 
tightness. Factors relevant to the particular problem under study are the number of product types, the 
worker to job types preference ratings, and the tightness of the Cbound and Zmin constraints.   

The factor w is considered at two levels: 5 and 10, while the number of jobs is based on the n/w 
ratio, equal to 10 and 20, thus the minimum n is 50 and the maximum is 200. The job’s process times are 
generated by a discrete uniform distribution (DU) with range 1 to 99, thus an average process time of 50. 
The due date tightness is based on the due date tightness ratio (ddtr) as in Ho and Chang (1995); and a 
higher ddtr would result in a larger number of late jobs. Let Dmax = 50 × n / (w × ddtr), and the due date of 
a job be determined by pj+ DU(0, Dmax). This due date assignment method guarantees that each job will 
be on-time if placed at the start of the schedule of any worker, therefore there are at least w on time jobs. 
We consider  ddtr at 1 and 3, which are in line with the experiments by Ho and Chang (1995) and were 
selected given in pilot experiments result in “reasonable” on time percentages.  
 In regards to the satisfaction related parameters, we maintain the range used in the example (rmax 
= 7 and rmin = 1). The number of job types b is considered at two levels, 5 and 10 and the probability that 
a job is of a type is 1/b. The preference rating between each worker k job type tj, rk,tj  is generated by a 
discrete function of the form: [probability, preference rating value, probability, preference rating value, 



…]. We define three cases of this function: case 1: [5%, 1, 10%, 2, 20%, 3, 30%, 4, 20%, 5, 10%, 6, and 
5%, 7]; case 2: [20%, 1, 25%, 2, 15%, 3, 15%, 4, 10%, 5, 10%, 6, and 5%, 7]; and  case 3: [5%, 1, 10%, 
2, 10%, 3, 15%, 4, 15%, 5, 25%, 6, and 20%, 7]. The first case representing an environment where a 
majority of the job types provides an acceptable level of satisfaction and only a few are “hated”/ disliked 
or “loved”/preferred, the second case represents the environment where a majority of the job types are 
“hated”/ disliked, and a minority “loved”/preferred, and the third case where a majority of the job types 
are “loved”/preferred and a minority “hated”/disliked.  Clearly in terms of difficulty (as to meet the Zmin 
constrain) case 2 is the “hardest”, while case 3 is the “easiest”. Twenty five problem instances are created 
for each of the combinations, therefore a total of 1,200 problems.  
 The final two experimental factors are the tightness of the Cbound and Zmin constraints. We consider 
Cbound at two levels, defined in each instance by 105%P/w and 101%P/w, and Zmin at two levels: 3 and 4. 
Therefore each instance is solved four times, under each of the four combinations of Cbound and Zmin. This 
results in a total of 192 combinations. 
 
5.1 Shop Indicators for the benchmark solution sets 
As discussed earlier, the benchmark solution set is the non-dominated solution set for a problem instance 
which combines the schedules generated by all the heuristics. Each benchmark set for a problem instance 
will have a particular number of solutions, and a range of Ot and Zave values. The average results by 
experimental variable are presented in Table 5, noting that all values are based on the instances where at 
least one feasible schedule was generated (thus a benchmark set exists). The table presents the averages 
per experimental factor for the number of instances solved (out of 25 per experimental combination), the 
number of benchmark solutions, the lowest and highest on time percentage, and  the lowest and highest 
average satisfaction.  In terms of the average number of instances that were solved, three factors play a 
noticeable role; the number of product types (b), the cases used to generate the preference ratings, and the 
minimum satisfaction level (Zmin). As there are fewer product types, there are fewer relationships between 
workers and products and thus fewer alternatives in the scheduling process, thus limiting what can be 
done to meet the Cbound and Zmin constraints. Similarly, as more of the relationships between workers and 
types are of “dislike” (case 2), the possibility of generating schedules that meet the Zmin constraint is 
reduced, and alternative, as there are more “like” relationships, the probabilities increase (at least one 
feasible schedule was generated for a 100% of the case 3 experiments. Finally, it is obvious that as Zmin 
decreases (and/or Cbound decreases) the possibility of finding feasible schedules is reduced. The 
experiments with Zmin = 4, case 2, and b =5 had as an average 10.75 instances solved, thus under those 
experimental conditions more than half of the problems none of the heuristics was able to generate even a 
single schedule that met the Cbound and Zmin constraints.  

Three factors affected the average number of benchmark solutions, a problem metric which is 
relevant as it gives a wider set of options to the decision makers. As the problem size increased, defined 
by a higher number of workers and jobs to schedule, the number of alternative schedules increased, which 
is an intuitive result. Another intuitive result was that a larger Cbound resulted in a higher number of 
benchmark solutions, this as it allows more flexibility in allocation jobs among the workers (e.g. having 
late jobs assigned to workers with high preference ratings for those types at the end of the schedule while 
some other workers have no assigned jobs). When w = 5, n/w = 10 and Cbound = 1%, the average number 
of benchmark solutions is 2.23, while when w = 10, n/w = 20 and Cbound = 5%, the average number of 
benchmark solutions is 5.69. Regarding the lowest and highest on time percentages, only the ddtr 
parameter had an effect, which is expected as it controls the due date tightness. Also as expected, only the 



cases used to generate the preference had an effect on the average satisfaction scores. It is interesting to 
note that a higher Zmin did not increase the range for the average satisfaction scores (Zave). 
 

Factor Level Number of 
instances 

solved 

Number of 
benchmark 
solutions 

lowest 
Ot% 

highest 
Ot% 

lowest 
Zave 

highest 
Zave 

w 5 22.8 3.1 73% 77% 4.9 5.3 
 10 22.7 4.8 71% 77% 5.0 5.5 
        

n/w 10 22.4 3.3 72% 77% 5.0 5.4 
 20 23.1 4.5 71% 77% 4.9 5.4 
        

ddtr 1 22.8 4.1 90% 96% 5.0 5.4 
 3 22.8 3.8 53% 58% 4.9 5.4 
        

b 5 21.5 4.0 71% 77% 4.9 5.3 
 10 24.1 3.9 72% 77% 5.0 5.5 
        

rk, tj case 1 24.3 4.0 71% 77% 4.7 5.2 
 case 2 19.0 3.6 72% 77% 4.5 4.9 
 case 3 25.0 4.1 71% 77% 5.6 6.2 
        

Zmin 3 24.2 4.1 71% 77% 4.9 5.4 
 4 21.4 3.8 72% 77% 5.0 5.4 
        

Cbound 101%P/w 22.4 3.5 72% 76% 4.9 5.4 
 105%P/w 23.1 4.3 71% 77% 5.0 5.4 

 
Table 5. Performance indicators for the benchmark set. 

 
5.2 Heuristic Performance - Efficiency Scores and Percentage of Benchmark Solution 
The efficiency score results per experimental factor for the eight heuristics are presented in Table 6. 
Based on those instances that each heuristic was able to solve, the two best performing heuristics are BI-
jr1-wr1 and BI-jr2-wr1 with overall efficiency scores of 0.977 and 0.980, followed by BI-jr1-wr2 with an 
average score of 0.965. The remaining five heuristic have very similar efficiency averages, ranging from 
0.957 to 0.959.  
 Three of the experimental factors have an effect on the best performing heuristic: the number of 
workers, the congestion ratio, and the number of product types. At w = 5, heuristic BI-jr2-wr1 dominates 
while at w = 10, both BI-jr1-wr1 and Bi-jr2-wr1 outperform the rest. The results for the ddtr factor are 
interesting as at ddtr = 1 a heuristic based on the JobIterative approach dominates, in this case performing 
at a similar level to BI-jr1-wr1. Finally, in regards to the number of product types, at b = 5 there is no 
notable difference between BI-jr1-wr1 and BI-jr2-wr1, while at b = 10, heuristic BI-jr2-wr1 outperforms 
all others.  
  



 
  BinIterative(BI) JobIterative(JI) 

Factor Level jr1-wr1 jr1-wr2 jr2-wr1 jr2-wr2 jr1-wr1 jr1-wr2 jr2-wr1 jr2-wr2 
w 5 0.976 0.960 0.984 0.956 0.958 0.956 0.960 0.956 
 10 0.978 0.969 0.977 0.960 0.955 0.961 0.958 0.961 
          

n/w 10 0.978 0.969 0.979 0.960 0.954 0.954 0.957 0.954 
 20 0.976 0.960 0.982 0.956 0.959 0.963 0.961 0.963 
          

ddtr 1 0.982 0.959 0.974 0.949 0.976 0.962 0.982 0.962 
 3 0.972 0.970 0.987 0.967 0.937 0.955 0.935 0.955 
          

b 5 0.979 0.968 0.977 0.956 0.959 0.962 0.962 0.963 
 10 0.975 0.961 0.984 0.960 0.954 0.955 0.956 0.954 
  

        
rk, tj case 1 0.979 0.965 0.981 0.951 0.960 0.962 0.960 0.959 

 case 2 0.975 0.960 0.982 0.957 0.959 0.958 0.957 0.954 
 case 3 0.976 0.969 0.979 0.966 0.950 0.955 0.960 0.962 
  

        
Zmin 3 0.974 0.960 0.979 0.954 0.952 0.955 0.955 0.956 

 4 0.980 0.969 0.982 0.962 0.961 0.962 0.963 0.961 
          

Cbound 101%P/w 0.977 0.964 0.980 0.959 0.958 0.959 0.961 0.959 
 105%P/w 0.977 0.965 0.980 0.957 0.955 0.958 0.957 0.958 
          

Overall 0.977 0.965 0.980 0.958 0.957 0.959 0.959 0.958 
 

Table 6. Efficiency results. 
 

Table 7 presents the results for the average percentage of benchmark solutions generated by each 
heuristic. The percentages add to more than 100% as more than one heuristic can generate one of the 
benchmark solutions. All averages above 15% are in bold, and as can be easily noted heuristics BI-jr1-
wr1, BI-jr1-wr2, and BI-jr2-wr1 generate a majority of the benchmark solutions. However, the sum of the 
percentages for these three heuristic is always less then 100%, thus the other heuristics do generate 
solutions that are part of the benchmark sets. Heuristic JI-jr2-wr1 contributes an overall 14% of the 
benchmark solutions, and its percentage related to several of the experimental variables, in particular the 
congestion ratio, where at ddtr = 1 it generates 27% of the benchmark solutions, while at ddtr = 1 it 
generates 2% of the benchmark solutions. 

  



 
  BinIterative(BI) JobIterative(JI) 

Factor Level jr1-wr1 jr1-wr2 jr2-wr1 jr2-wr2 jr1-wr1 jr1-wr2 jr2-wr1 jr2-wr2 
w 5 24% 15% 36% 8% 8% 4% 15% 5% 
 10 28% 21% 30% 10% 7% 5% 14% 5% 
          

n/w 10 26% 21% 31% 11% 8% 3% 16% 4% 
 20 25% 16% 34% 8% 7% 5% 13% 6% 
          

ddtr 1 28% 17% 19% 4% 14% 4% 27% 5% 
 3 23% 19% 46% 14% 2% 4% 2% 5% 
          

b 5 28% 20% 31% 9% 7% 6% 15% 6% 
 10 23% 16% 34% 9% 9% 3% 14% 4% 
          

rk, tj case 1 26% 16% 34% 4% 9% 5% 10% 3% 
 case 2 26% 19% 35% 8% 12% 5% 16% 5% 
 case 3 25% 19% 30% 16% 2% 3% 18% 6% 
          

Zmin 3 25% 16% 32% 8% 7% 4% 13% 5% 
 4 26% 20% 34% 10% 9% 5% 15% 5% 
          

Cbound 101%P/w 26% 18% 32% 11% 8% 5% 17% 6% 
 105%P/w 25% 18% 33% 8% 7% 4% 12% 4% 
          

Overall 26% 18% 33% 9% 8% 4% 14% 5% 
 

Table 7. Percentage of benchmark solutions results. 
 
5.3 Heuristic Performance – Instances solved 
The efficiency  and percentage of benchmark solutions metrics do not tell the complete picture of 
heuristic performance as these are based on the problem instances that each of the heuristic solves 
(generates at least one schedule). Table 8 presents the average number of instances that each heuristic 
solves per experimental combination (maximum is 25). Heuristics JI-jr2-wr1 and JI-jr2-wr2 are the best 
performers, finding solutions to an average of 22.3 and 22.2 instances per experimental point (out of 25).  
When we compare it to the best performing heuristic in terms of efficiency, BI-jr1-wr1 and BI-jr2-wr1, it 
solves on average one more problem instance per experimental point. The most relevant experimental 
factor when considering this metric is the cases used to generate the preference rating, where in case 2 
(higher percentage of dislike relationships), heuristic JI-jr2-wr1 solves on average 3.3 more instances per 
experimental point than BI-jr2-wr1 (which is the best performer in terms of the efficiency score for case 
2).  
 
  



 
  BinIterative(BI) JobIterative(JI) 

Factor Level jr1-wr1 jr1-wr2 jr2-wr1 jr2-wr2 jr1-wr1 jr1-wr2 jr2-wr1 jr2-wr2 
w 5 21.0 21.7 20.8 21.9 21.1 21.3 22.3 22.1 
 10 21.4 21.8 20.6 21.6 21.4 21.7 22.4 22.3 
          

n/w 10 20.4 20.9 20.0 21.1 20.4 20.9 21.7 21.6 
 20 21.9 22.6 21.4 22.4 22.1 22.1 22.9 22.8 
          

ddtr 1 20.6 21.4 20.4 21.6 20.5 21.1 22.6 22.3 
 3 21.8 22.1 20.9 22.0 22.0 21.9 22.0 22.1 
          

b 5 19.6 20.3 19.0 20.2 19.6 19.9 20.9 20.7 
 10 22.8 23.2 22.4 23.3 22.9 23.1 23.7 23.7 
          

rk, tj case 1 23.0 23.6 22.5 23.6 23.0 23.3 23.9 23.8 
 case 2 15.7 16.7 14.8 16.8 15.9 16.3 18.1 17.8 
 case 3 24.8 24.9 24.8 24.9 24.8 24.9 24.9 24.9 
          

Zmin 3 23.4 23.7 23.0 23.7 23.3 23.6 24.0 24.0 
 4 19.0 19.8 18.4 19.8 19.2 19.4 20.7 20.4 
          

Cbound 101%P/w 19.9 20.8 19.4 20.9 20.0 20.5 21.7 21.5 
 105%P/w 22.4 22.7 22.0 22.6 22.5 22.5 23.0 22.9 
          

Overall 21.2 21.7 20.7 21.8 21.3 21.5 22.3 22.2 
 

Table 8. Percentage of benchmark solutions results. 
 
 
5.4 Concluding Remarks about the heuristics 
These results led to the conclusion that no single heuristic can be used to generate the benchmark set and 
at least a few methods should be used to solve any problem instance. Heuristics BI-jr1-wr1, BI-jr1-wr2, 
and BI-jr2-wr1 have consistently high efficiency values, although they have limitations in finding feasible 
solutions, in particular in the condition of many “dislike” worker to product type relationships (case 2). 
On the other hand, heuristics JI-jr2-wr1 and JI-jr2-wr2 are the best performers in terms of finding 
solutions for a majority of the instances, but have low efficiency scores when compared to the 
BinIterative approaches.   
 
 
6. SAMPLE APPLICATION 
To demonstrate the problem and production planning process a prototype was developed in Excel ® and 
Visual Basic for Applications ®. The prototype includes the key information components as well as the 
outputs that the production planner would use. As for most prototypes, the goal is to demonstrate 
capabilities and determine areas where additional features may be needed, and it is not intended to be a 
fully functional software. The implemented prototype used five of the  heuristics in the generation of the 
benchmark sets to be presented to the scheduler (all versions of BinIterative and Ji-J2-W1) and was 
limited to six workers, forty jobs and five product types.  
 
Figures 2 and 3 present the Excel sheets that collect the information related to the workers and to the jobs. 
Some of the assumptions of the prototype is that the process times are assumed in hours (integer), 



schedule starts at time 0 of the start date (a calendar date) for all workers, due dates are based on calendar 
dates (job is due at the end of that calendar date), work is performed 8 hours per day, work can span 
across multiple days, and there is no work on the weekends. A warning is made to the planner if the start 
date or any due date is set for a weekend date. 
 

 
Figure 2. Prototype tool snapshot: Job Information sheet. 

 

 
Figure 3. Prototype tool snapshot: Worker  Information sheet. 

 
Figure 4 presents the left side of the Schedule Manager worksheet. In this page the planner will call for 
the heuristics to generate production plans. Note that initially the area to the right is empty. The grid on 
the prototype allows the planner to select the desired level of minimum utilization and minimum 
satisfaction level for the workers. It is obvious that clicking on the top left quadrant of the grid (a button) 
will provide the less constrained set of schedules, thus the best options in terms of on time performance 
and average satisfaction.  
 



 
Figure 4. Prototype tool snapshot: Scheduler worksheet – start of process 

 
Figure 5 illustrates what occurs when the user clicks on one of the buttons of the grid, in this case on the 
top left button.  A new display area lists the selected parameters and the solutions generated. The planner 
can then view any of the schedules generated by the system by clicking on the blue arrows. Figure 6 
presents the left side of the sheet (after the planner clicks on one of the blue arrows) and a schedule is 
shown, in this case the schedule with 70% on time jobs and Zave = 4.83. The prototype displays the 
schedule by calendar days and differentiates on time jobs from late jobs by their color. An additional 
feature is that the user can select to see the job assignments that have very low preference ratings (Figure 
7). Finally Figures 8 and 9 present the list of schedules generated when other buttons on the grid to the 
left are selected. In the case presented in Figure 8, at a minimum satisfaction level of 4.5 and 95% 
utilization, two schedules were generated and the highest on time percentage is 72.5%, while as shown in 
Figure 9, at the tightest constraints of minimum satisfaction and  utilization (5 and 95% respectively), no 
schedules that satisfy these constraints were found. 
 
Additional prototype features suggested by possible users include a grid that shows all the schedules 
simultaneously and the ability to manipulate job to worker assignments on the schedule as to test single 
jobs moves in order to eliminate very low satisfaction assignments.  
 
  



 
Figure 5. Prototype tool snapshot: Schedule Manager worksheet – a list of generated schedules based on 

the planner’s selected parameters. 
 
 

 



Figure 6. Prototype tool snapshot: Schedule Manager worksheet – showing Gantt chart for the schedule 
selected by the planner. 

 

 
Figure 7. Prototype tool snapshot: Schedule Manager worksheet – feature that shows job assignments 

with very low satisfaction ratings on the Gantt chart. 
 

 
Figure 8. Prototype tool snapshot: Schedule Manager worksheet – change in the parameters (constraints) 

resulting in a smaller set of feasible schedules. 



 
Figure 9. Prototype tool snapshot: Schedule Manager worksheet – case where no schedules are found that 

satisfy the parameters (constraints) selected by the planner. 
 
 
7. SUMMARY AND FUTURE WORK 
This research proposes a scheduling model that considers the preference that workers have towards the 
work is assigned to them. This consideration is not typically taken into account in the scheduling 
literature, yet is highly relevant given in most cases happy workers equates to higher productivity  (Taris 
and Schreurs, 2009). The model aims to maximize two objectives simultaneously, one related to customer 
service (the on time completion of tasks) and the total worker satisfaction. The model also considers an 
efficiency related constraint (the maximum completion time of all tasks), and minimum worker 
satisfaction constraint. The paper presents various heuristics and evaluates their performance. 
Performance evaluation is based on an efficiency score given the two maximization objectives are 
considered in a non-dominated form. The computational experiments consider as factors the number of 
worker, number of jobs, job type to worker satisfaction scores, and due date tightness. Results show that a 
few of the heuristics have consistently high efficiency values, although they have limitations in finding 
feasible solutions. Finally, a prototype was developed in Excel and Visual Basic for Applications to 
demonstrate the model capabilities to support scheduling in a real world environment. 

 Future research in scheduling that considers worker satisfaction can take multiple interesting 
directions. While this paper proposed an aggregate score based on worker satisfaction averages, other 
approaches to measure this could certainly be developed including non-linear representations and 
approached that focus solely on maximizing the minimum worker satisfaction (best for the worst off). 
Given in many cases worker satisfaction may be seen as a secondary measure, problems that maximize 
worker satisfaction subject to an optimal “regular” measure of performance are also interesting and useful 
directions. Finally, problems that consider worker satisfaction and their skill at performing the type of 
task also represent appealing cases for analysis. 
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